[1] 国家统计局. 国家数据—煤层气产量[DB/OL]. 2020. http://data.stats.gov.cn/easyquery.htm

http://data.stats.gov.cn/easyquery.htm?cn=A01. [National Bureau of Statistics of China. National data-Output of coalbed gas[DB/OL]. 2020. http://data.stats.gov.cn/easyquery.htm?cn=A01. http://data.stats.gov.cn/easyquery.htm
[2] Liu S Q, Sang S X, Wang G, et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017, 148: 21-31.
[3] Li S, Tang D Z, Pan Z J, et al. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: Implications for coalbed methane development[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 394-402.
[4] 钟建华,刘闯,吴建光,等. 鄂尔多斯盆地东缘临兴地区煤系气共生成藏特征[J]. 煤炭学报,2018,43(6):1517-1525.

Zhong Jianhua, Liu Chuang, Wu Jianguang, et al. Symbiotic accumulation characteristics of coal measure gas in Linxing Block, eastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(6): 1517-1525.
[5] 王博洋,秦勇,申建,等. 我国低煤阶煤煤层气地质研究综述[J]. 煤炭科学技术,2017,45(1):170-179.

Wang Boyang, Qin Yong, Shen Jian, et al. Summarization of geological study on low rank coalbed methane in China[J]. Coal Science and Technology, 2017, 45(1): 170-179.
[6] 余坤,屈争辉,琚宜文,等. 二连盆地胜利煤田含煤地层埋藏史及热史分析[J]. 沉积学报,2018,36(5):903-913.

Yu Kun, Qu Zhenghui, Ju Yiwen, et al. Burial and thermal history of coal-bearing strata in Shengli coalfield, Erlian Basin[J]. Acta Sedimentologica Sinica, 2018, 36(5): 903-913.
[7] 刘贻军,娄建青. 中国煤层气储层特征及开发技术探讨[J]. 天然气工业,2004,24(1):68-71.

Liu Yijun, Lou Jianqing. Study on reservoir characteristics and development technology of coal-bed gas in China[J]. Natural Gas Industry, 2004, 24(1): 68-71.
[8] 桑树勋,刘世奇,王文峰,等.深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M]. 北京:科学出版社,2020.

Sang Shuxun, Liu Shiqi, Wang Wenfeng, et al. Validation theory and evaluation of CO2 geological storage and CH4 enhanced recovery with deep coal seam[M]. Beijing: Science Press, 2020.
[9] Zhang S H, Tang S H, Tang D Z, et al. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China[J]. International Journal of Coal Geology, 2010, 81(2): 117-127.
[10] Liu S Q, Sang S X, Liu H H, et al. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui Basin[J]. Ore Geology Reviews, 2015, 64: 140-151.
[11] Moore T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101: 36-81.
[12] Liu S Q, Sang S X, Pan Z J, et al. Study of characteristics and formation stages of macroscopic natural fractures in coal seam #3 for CBM development in the east Qinnan block, southern Quishui Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1321-1332.
[13] Liu S Q, Ma J S, Sang S X, et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal[J]. Fuel, 2018, 223: 32-43.
[14] Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242: 96-108.
[15] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions[J]. Fuel, 1999, 11(78): 1333-1344.
[16] Alexeev A D, Feldman E P, Vasilenko T A. Methane desorption from a coal-bed[J]. Fuel, 2007, 86(16): 2574-2580.
[17] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentolgica Sinica, 2020, 38(1): 1-29.
[18] 孙家广,赵贤正,桑树勋,等. 基于光学显微观测的煤层裂隙发育特征、成因及其意义:以沁水盆地南部3#煤层为例[J]. 断块油气田,2016,23(6):738-744.

Sun Jiaguang, Zhao Xianzheng, Sang Shuxun, et al. Development characteristics, origins and significance of coal seam fractures under optical microscope: Taking coal seam 3# in southern Qinshui Basin as an example[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 738-744.
[19] Wang A M, Wei Y C, Yuan Y, et al. Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China[J]. Marine and Petroleum Geology, 2017, 86: 675-688.
[20] Giffin S, Littke R, Klaver J, et al. Application of BIB–SEM technology to characterize macropore morphology in coal[J]. International Journal of Coal Geology, 2013, 114: 85-95.
[21] 赵迪斐,郭英海,毛潇潇,等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517-1526.

Zhao Difei, Guo Yinghai, Mao Xiaoxiao, et al. Characteristics of macro-nanopores in anthracite coal based on mercury injection, nitrogen adsorption and FE-SEM[J]. Journal of China Coal Society, 2017, 42(6): 1517-1526.
[22] Pan J N, Wang K, Hou Q L, et al. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory[J]. Fuel, 2016, 164: 277-285.
[23] 赵峰华,任德贻. 应用高分辨率透射电镜研究煤显微组分的结构[J]. 地质论评,1995,41(6):564-570.

Zhao Fenghua, Ren Deyi. The application of high-resolution transmission electron microscopy to study the structures of coal macerals[J]. Geological Review, 1995, 41(6): 564-570.
[24] 李霞,曾凡桂,司加康,等. 不同变质程度煤的高分辨率透射电镜分析[J]. 燃料化学学报,2016,44(3):279-285.

Li Xia, Zeng Fangui, Si Jiakang, et al. High resolution TEM image analysis of coals with different metamorphic degrees[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 279-285.
[25] 郭亚楠,唐跃刚,王绍清,等. 树皮残植煤显微组分分离及高分辨透射电镜图像分子结构[J]. 煤炭学报,2013,38(6):1019-1024.

Guo Yanan, Tang Yuegang, Wang Shaoqing, et al. Maceral separation of bark liptobiolite and molecular structure study through high resolution TEM images[J]. Journal of China Coal Society, 2013, 38(6): 1019-1024.
[26] Pan J N, Zhu H T, Hou Q L, et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel, 2015, 139: 94-101.
[27] Liu J X, Jiang X M, Huang X Y, et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel, 2010, 89(12): 3884-3891.
[28] 姚素平,焦堃,张科,等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报,2011,56(22):1820-1827.

Yao Suping, Jiao Kun, Zhang Ke, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820-1827.
[29] 杨起,潘治贵,汤达祯,等. 煤结构的STM和AFM研究[J]. 科学通报,1994,39(7):633-635.

Yang Qi, Pan Zhigui, Tang Dazhen, et al. Study of coal structure using STM and AFM[J]. Chinese Science Bulletin, 1994, 39(7): 633-635.
[30] Fang H H, Sang S X, Liu S Q, et al. Methodology of three-dimensional visualization and quantitative characterization of nanopores in coal by using FIB-SEM and its application with anthracite in Qinshui Basin[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106285.
[31] Fang H H, Sang S X, Liu S Q. A methodology for characterizing the multiscale pores and fractures in anthracite and semi-anthracite coals and its application in analysis of the storage and permeable capacity of coalbed methane[J]. SPE Reservoir Evaluation & Engineering, 2020, 23(1): 177-186.
[32] 马勇,钟宁宁,程礼军,等. 渝东南两套富有机质页岩的孔隙结构特征:来自FIB-SEM的新启示[J]. 石油实验地质,2015,37(1):109-116.

Ma Yong, Zhong Ningning, Cheng Lijun, et al. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from Focused Ion Beam Scanning Electron Microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116.
[33] 马勇,钟宁宁,黄小艳,等. 聚集离子束扫描电镜(FIB-SEM)在页岩纳米级孔隙结构研究中的应用[J]. 电子显微学报,2014,33(3):251-256.

Ma Yong, Zhong Ningning, Huang Xiaoyan, et al. The application of Focused Ion Beam Scanning Electron Microscope (FIB-SEM) to the nanometer-sized pores in shales[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(3): 251-256.
[34] 王朋飞,吕鹏,姜振学,等. 中国海陆相页岩有机质孔隙发育特征对比:基于聚焦离子束氦离子显微镜(FIB-HIM)技术[J]. 石油实验地质,2018,40(5):739-748.

Wang Pengfei, Lü Peng, Jiang Zhenxue, et al. Comparison of organic matter pores of marine and continental facies shale in China: Based on Focused Ion Beam Helium Ion Microscopy (FIB-HIM)[J]. Petroleum Geology & Experiment, 2018, 40(5): 739-748.
[35] 王朋飞,姜振学,吕鹏,等. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学,2018,29(7):997-1008.

Wang Pengfei, Jiang Zhenxue, Lü Peng, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J]. Natural Gas Geoscience, 2018, 29(7): 997-1008.
[36] 宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324.

Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic-rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324.
[37] Bustin R M, Bustin A M M, Cui X, et al. Impact of shale properties on pore structure and storage characteristics[C]//The society of petroleum engineers shale gas production conference. Fort Worth: SPE, 2008.
[38] Mares T E, Radliński A P, Moore T A, et al. Assessing the potential for CO2 adsorption in a subbituminous coal, Huntly Coalfield, New Zealand, using small angle scattering techniques[J]. International Journal of Coal Geology, 2009, 77(1/2): 54-68.
[39] Yao Y B, Liu D M, Xie S B. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method[J]. International Journal of Coal Geology, 2014, 131: 32-40.
[40] 宋晓夏,唐跃刚,李伟,等. 基于小角X射线散射构造煤孔隙结构的研究[J]. 煤炭学报,2014,39(4):719-724.

Song Xiaoxia, Tang Yuegang, Li Wei, et al. Pore structure in tectonically deformed coals by small angle X-ray scattering[J]. Journal of China Coal Society, 2014, 39(4): 719-724.
[41] Okolo G N, Everson R C, Neomagus H W J P, et al. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141: 293-304.
[42] Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369.
[43] Yao Y B, Liu D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152-158.
[44] 姚艳斌,刘大锰,蔡益栋,等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学(D辑):地球科学,2010,40(11):1598-1607.

Yao Yanbin, Liu Dameng, Cai Yidong, et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China (Seri. D): Earth Sciences, 2010, 40(11): 1598-1607.
[45] Liu S Q, Sang S X, Hu Q J, et al. Characteristics of high rank coal structure parallel and perpendicular to the bedding plane via NMR and X‑ray CT[J]. Petroleum Science, 2020, 17(4): 925-938, doi: 10.1007/s12182-020-00462-w.
[46] Liu S Q, Sang S X, Ma J S, et al. Three-dimensional digitalization modeling characterization of pores in high-rank coal in the southern Qinshui basin[J]. Geosciences Journal, 2019, 23(1): 175-188.
[47] 王登科,魏强,魏建平,等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报,2020,49(1):103-109,122.

Wang Dengke, Wei Qiang, Wei Jianping, et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology, 2020, 49(1): 103-109, 122.
[48] Radlinski A P, Mastalerz M, Hinde A L, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. International Journal of Coal Geology, 2004, 59(3/4): 245-271.
[49] Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616.
[50] Zhao Y X, Liu S M, Elsworth D, et al. Pore structure characterization of coal by Synchrotron Small-Angle X‑ray Scattering and Transmission Electron Microscopy[J]. Energy & Fuels, 2014, 28(6): 3704-3711.
[51] 徐祖新,郭少斌. 基于氩离子抛光-SEM和ImageJ软件的页岩储层孔隙结构分析:以中扬子地区陡山沱组为例[J]. 东北石油大学学报,2014,38(4):45-51.

Xu Zuxin, Guo Shaobin. Analysis of the pore structure of shale gas reservoirs based on argon-ion milling SEM and ImageJ[J]. Journal of Northeast Petroleum University, 2014, 38(4): 45-51.
[52] 陆小霞,黄文辉,陈燕萍,等. 沁水盆地南部深煤层孔隙结构特征[J]. 东北石油大学学报,2015,39(3):41-49.

Lu Xiaoxia, Huang Wenhui, Chen Yanping, et al. Pore structure of deep coal seam in southern Qinshui Basin[J]. Journal of Northeast Petroleum University, 2015, 39(3): 41-49.
[53] 杨峰,宁正福,胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报,2013,34(2):301-311.

Yang Feng, Ning Zhengfu, Hu Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311.
[54] 降文萍,宋孝忠,钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报,2011,36(4):609-614.

Jiang Wenping, Song Xiaozhong, Zhong Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Journal of China Coal Society, 2011, 36(4): 609-614.
[55] Radliński A P, Busbridge T L, Gray E M A, et al. Small angle X-ray scattering mapping and kinetics study of sub-critical CO2 sorption by two Australian coals[J]. International Journal of Coal Geology, 2009, 77(1/2): 80-89.
[56] 杨延辉,刘世奇,桑树勋,等. 基于三维空间表征的高阶煤连通孔隙发育特征[J]. 煤炭科学技术,2016,44(10):70-76.

Yang Yanhui, Liu Shiqi, Sang Shuxun, et al. Interconnected pore development features of high rank coal based on 3D space characteristics[J]. Coal Science and Technology, 2016, 44(10): 70-76.
[57] Heriawan M N, Koike K. Coal quality related to microfractures identified by CT image analysis[J]. International Journal of Coal Geology, 2015, 140: 97-110.
[58] 唐巨鹏,潘一山,张佐刚. 煤层气赋存和运移规律的NMRI研究[J]. 辽宁工程技术大学学报,2005,24(5):674-676.

Tang Jupeng, Pan Yishan, Zhang Zuogang. NMRI research on storage and transport of coalbed methane[J]. Journal of Liaoning Technical University, 2005, 24(5): 674-676.
[59] 唐巨鹏,潘一山,郭和坤,等. 利用NMRI技术测定煤储层渗透率[J]. 煤炭学报,2004,29(增刊):61-65.

Tang Jupeng, Pan Yishan, Guo Hekun, et al. Using NMRI technique to measure coal seam permeability[J]. Journal of China Coal Society, 2004, 29(Suppl.): 61-65.
[60] 潘一山,唐巨鹏,李成全. 煤层中气水两相运移的NMRI试验研究[J]. 地球物理学报,2008,51(5):1620-1626.

Pan Yishan, Tang Jupeng, Li Chengquan. NMRI test on two-phase transport of gas-water in coal seam[J]. Chinese Journal of Geophysics, 2008, 51(5): 1620-1626.
[61] 刘世奇,桑树勋,Ma Jingsheng,等. 基于非理想气体流动模拟的无烟煤纳米孔隙中CH4流动规律[J]. 中国矿业大学学报,2020,49(1):36-43.

Liu Shiqi, Sang Shuxun, Ma Jingsheng, et al. The flow behavior of CH4 in nanopores of anthracite coal based on a non-ideal gas-flow simulation[J]. Journal of China University of Mining & Technology, 2020, 49(1): 36-43.
[62] 傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.

Fu Xuehai, Qin Yong, Wei Chongtao. Coalbed methane geology[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[63] 霍多特 B B. 煤与瓦斯突出[M]. 宋世钊,王佑安,译. 北京:中国工业出版社,1966:27-30.

Ходот B B. Coal and gas outburst[M]. Song Shizhao, Wang Youan, trans. Beijing: China Industry Press, 1996: 27-30.
[64] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
[65] Close J C. Natural fractures in coal[M]//Law B E, Rice D D. Hydrocarbons from coal. Tulsa: AAPG, 1993: 119-132.
[66] 桑树勋,朱炎铭,张时音,等. 煤吸附气体的固气作用机理(Ⅰ):煤孔隙结构与固气作用[J]. 天然气工业,2005,25(1):13-15.

Sang Shuxun, Zhu Yanming, Zhang Shiyin, et al. Solid-gas interaction mechanism of coal-adsorbed gas (Ⅰ): Coal pore structure and solid-gas interaction[J]. Natural Gas Industry, 2005, 25(1): 13-15.
[67] 杨思敬,杨福蓉,高照祥. 煤的孔隙系统和突出煤的孔隙特征[C]//第二届国际采矿科学技术讨论会论文集. 徐州:中国矿业大学出版社,1991:770-777. [

Yang Sijing, Yang Furong, Gao Zhaoxiang. Coal pore system and pore characteristics in outburst coal[C]//The memoir of the 2th international symposium on mining science and technology. Xuzhou: China University of Mining and Technology Press, 1991: 770-777.]
[68] 秦勇,徐志伟,张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报,1995,20(3):266-271.

Qin Yong, Xu Zhiwei, Zhang Jing. Natural classification of the high-rank coal pore structure and its application[J]. Journal of China Coal Society, 1995, 20(3): 266-271.
[69] 傅雪海,秦勇,张万红,等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报,2005,50(增刊):51-55.

Fu Xuehai, Qin Yong, Zhang Wanhong, et al. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane[J]. Chinese Science Bulletin, 2005, 50(Suppl.): 51-55.
[70] Gan H, Nandi S P, Walker Jr P L. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4): 272-277.
[71] 煤炭科学院抚顺研究所,淮南矿业学院. 煤层烃类气体组分与煤岩煤化关系的研究[R]. 抚顺:抚顺煤炭科学研究所,1985.

Fushun Coal Science Research Institute, Huainan Mining Institute. Study on the relationship between hydrocarbon gas components and coal coalification in coal seam[R]. Fushun: Fushun Coal Science Research Institute, 1985.
[72] 吴俊,金奎励,童有德,等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报,1991,16(3):86-95.

Wu Jun, Jin Kuili, Tong Youde, et al. Theory of coal pores and its application in evaluation of gas outburst proneness and gas drainage[J]. Journal of China Coal Society, 1991, 16(3): 86-95.
[73] Sang S X, Liu H H, Li Y M, et al. Geological controls over coal-bed methane well production in southern Qinshui basin[J]. Procedia Earth and Planetary Science, 2009, 1(1): 917-922.
[74] 钟玲文,张群,解光新,等. MT/T 968—2005煤裂隙描述方法[S]. 北京:中国煤炭工业出版社,2006.

Zhong Lingwen, Zhang Qun, Xie Guangxin,et al. MT/T 968-2005Description methodology of fracture in coal[S]. Beijing: China Coal Industry Publishing House, 2006.
[75] 张慧,王晓刚,员争荣,等. 煤中显微裂隙的成因类型及其研究意义[J]. 岩石矿物学杂志,2002,21(3):278-284.

Zhang Hui, Wang Xiaogang, Yuan Zhengrong, et al. Genetic types of microfractures in coal and their significance[J]. Acta Petrologica et Mineralogica, 2002, 21(3): 278-284.
[76] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报,2001,26(1):40-44.

Zhang Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001, 26(1): 40-44.
[77] 杨昊睿. 韩城地区构造煤孔隙结构和吸附特征分析[D]. 太原:太原理工大学,2017.

Yang Haorui. The analysis of tectonically deformed coal pore structure and adsorption in Hancheng area[D]. Taiyuan: Taiyuan University of Technology, 2017.
[78] 陈振宏. 高、低煤阶煤层气藏主控因素差异性对比研究[D]. 广州:中国科学院研究生院(广州地球化学研究所),2007.

Chen Zhenhong. Key controlling factors comparison between high and low rank CBM reservoir formation[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2007.
[79] 罗磊. 准东地区低阶煤储层物性研究[D]. 北京:中国地质大学(北京),2016.

Luo Lei. Fine description and physical properties of coal reservoir in eastern Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2016.
[80] 李玲,姚海鹏,李正,等. 二连盆地低阶煤储层物性特征及评价体系研究[J]. 中国煤炭,2019,45(4):43-51.

Li Ling, Yao Haipeng, Li Zheng, et al. Study on coal reservoir physical characteristics and evaluation system of low-rank coal in Erlian Basin[J]. China Coal, 2019, 45(4): 43-51.
[81] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报,1987(4):51-56.

Hao Qi. On morphological character and origin of micropores in coal[J]. Journal of China Coal Society, 1987(4): 51-56.
[82] 吴双,汤达祯,许浩,等. 中-高煤级煤岩孔隙发育特征[J]. 煤田地质与勘探,2016,44(6):69-74.

Wu Shuang, Tang Dazhen, Xu Hao, et al. Characteristics of pore development in medium-high rank coal[J]. Coal Geology & Exploration, 2016, 44(6): 69-74.
[83] 李旭. 不同变质程度煤比表面积与吸附特征关系的研究[D]. 沈阳:煤炭科学研究总院沈阳研究院,2007.

Li Xu. Research on relationship specific surface area to adsorption feature of different rank coals[D]. Shenyang: Shenyang Branch of China Coal Research Institute, 2007.
[84] 赵兴龙,汤达祯,许浩,等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学报,2010,35(9):1506-1511.

Zhao Xinglong, Tang Dazhen, Xu Hao, et al. Effect of coal metamorphic process on pore system of coal reservoirs[J]. Journal of China Coal Society, 2010, 35(9): 1506-1511.
[85] 王生维,陈钟惠. 煤储层孔隙、裂隙系统研究进展[J]. 地质科技情报,1995,14(1):53-59.

Wang Shengwei, Chen Zhonghui. Advances in the research of pore-fracture system in coal reservoir[J]. Geological Science and Technology Information, 1995, 14(1): 53-59.
[86] 程庆迎,黄炳香,李增华. 煤的孔隙和裂隙研究现状[J]. 煤炭工程,2011(12):91-93.

Cheng Qingying, Huang Bingxiang, Li Zenghua. Research status of pore and crack in coal[J]. Coal Engineering, 2011(12): 91-93.
[87] 朱兴珊. 煤层孔隙特征对抽放煤层气影响[J]. 中国煤层气,1996(1):37-39.

Zhu Xingshan. The influence of pore characteristics on the extraction of CBM[J]. China Coalbed Methane, 1996(1): 37-39.
[88] 李小彦,解光新. 孔隙结构在煤层气运移过程中的作用:以沁水盆地为例[J]. 天然气地球科学,2004,15(4):341-344.

Li Xiaoyan, Xie Guangxin. Effect of pore structure on CBM transport-Taking Qinshui Basin as the example[J]. Natural Gas Geoscience, 2004, 15(4): 341-344.
[89] 张胜利. 煤层割理及其在煤层气勘探开发中的意义[J]. 煤田地质与勘探,1995,23(4):27-30.

Zhang Shengli. Coal seam cleats and their significance in coalbed methane exploration and exploitation[J]. Coal Geology & Exploration, 1995, 23(4): 27-30.
[90] 苏现波,冯艳丽,陈江峰. 煤中裂隙的分类[J]. 煤田地质与勘探,2002,30(4):21-24.

Su Xianbo, Feng Yanli, Chen Jiangfeng. The classification of fractures in coal[J]. Coal Geology & Exploration, 2002, 30(4): 21-24.
[91] 霍永忠,张爱云. 煤层气储层的显微孔裂隙成因分类及其应用[J]. 煤田地质与勘探,1998,26(6):28-32.

Huo Yongzhong, Zhang Aiyun. The genetic classification and its application of microfracture in coal reservoir[J]. Coal Geology & Exploration, 1998, 26(6): 28-32.
[92] 王生维,侯光久,张明,等. 晋城成庄矿煤层大裂隙系统研究[J]. 科学通报,2005,50(增刊):38-44.

Wang Shengwei, Hou Guangjiu, Zhang Ming, et al. Analysis of the visible fracture system of coalseam in Chengzhuang Coalmine of Jincheng city, Shanxi province[J]. Chinese Science Bulletin, 2005, 50(Suppl.): 38-44.
[93] 苏现波,吴贤涛. 煤的裂隙与煤层气储层评价[J]. 中国煤层气,1996(2):88-90.

Su Xianbo, Wu Xiantao. The relationship between coal fracture and evaluation of coalbed methane reservoirs[J]. China Coalbed Methane, 1996(2): 88-90.
[94] Groshong Jr R H, Pashin J C, McIntyre M R. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin[J]. Journal of Structural Geology, 2009, 31(9): 874-886.
[95] Kumar H, Lester E, Kingman S, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011, 88(1): 75-82.
[96] Laubach S E, Schultz-Ela D D, Tyler R. Analysis of compaction effects on coal fracture patterns, Upper Cretaceous rock springs formation, southwestern Wyoming[J]. The Mountain Geologut, 1993, 30(3): 95-110.
[97] 胡咤咤,黄文辉,刘素平,等. 沁水盆地南部煤储层显微裂隙发育的影响因素[J]. 煤田地质与勘探,2016,44(5):63-70.

Hu Zhazha, Huang Wenhui, Liu Suping, et al. Study on the influencing factors of the microfracture development in coal reservoir in southern Qinshui Basin[J]. Coal Geology & Exploration, 2016, 44(5): 63-70.
[98] 李勇,汤达祯,许浩,等. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报,2014,39(增刊):164-168.

Li Yong, Tang Dazhen, Xu Hao, et al. Characteristic of in-situ stress field in Liulin area, Ordos Basin and its control on coal fractures[J]. Journal of China Coal Society, 2014, 39(Suppl.): 164-168.
[99] Laubach S E, Marrett R A, Olson J E, et al. Characteristics and origins of coal cleat: A review[J]. International Journal of Coal Geology, 1998, 35(1/2/3/4): 175-207.
[100] Su X B, Feng Y L, Chen J F, et al. The characteristics and origins of cleat in coal from western North China[J]. International Journal of Coal Geology, 2001, 47(1): 51-62.
[101] 王生维,张明,庄小丽. 煤储层裂隙形成机理及其研究意义[J]. 地球科学:中国地质大学学报,1996,21(6):637-640.

Wang Shengwei, Zhang Ming, Zhuang Xiaoli. The mechanism of microfractures and cleats of coal reservoirs and their implication for methane recovery[J]. Earth Science:Journal of China University of Geosciences, 1996, 21(6): 637-640.
[102] 王生维,陈钟惠,张明. 煤基岩块孔裂隙特征及其在煤层气产出中的意义[J]. 地球科学:中国地质大学学报,1995,20(5):557-561.

Wang Shengwei, Chen Zhonghui, Zhang Ming. Pore and microfracture of coal matrix block and their effects on the recovery of methane from coal[J]. Earth Science:Journal of China University of Geosciences, 1995, 20(5): 557-561.
[103] 钟玲文. 煤内生裂隙的成因[J]. 中国煤田地质,2004,16(3):6-9.

Zhong Lingwen. The genesis of endogenic fracture in coal[J]. Coal Geology of China, 2004, 16(3): 6-9.
[104] 贾建称,张泓,贾茜,等. 煤储层割理系统研究:现状与展望[J]. 天然气地球科学,2015,26(9):1621-1628.

Jia Jiancheng, Zhang Hong, Jia Qian, et al. Status and prospect: Study on the cleat system in coal reservoir[J]. Natural Gas Geoscience, 2015, 26(9): 1621-1628.
[105] 张慧,王晓刚. 煤的显微构造及其储集性能[J]. 煤田地质与勘探,1998,26(6):33-36.

Zhang Hui, Wang Xiaogang. Microstructures of coal and their reservoir property[J]. Coal Geology & Exploration, 1998, 26(6): 33-36.
[106] Zhou F B, Liu S Q, Pang Y Q, et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels, 2015, 29(3): 1550-1557.
[107] Liu S Q, Fang H H, Sang S X, et al. CO2 injectability and CH4 recovery of the engineering test in Qinshui Basin, China based on numerical simulation[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102980.
[108] Fang H H, Sang S X, Liu S Q. Establishment of dynamic permeability model of coal reservoir and its numerical simulation during the CO2-ECBM process[J]. Journal of Petroleum Science and Engineering, 2019, 179: 885-898.
[109] Meng M, Baldino S, Miska S Z, et al. Wellbore stability in naturally fractured formations featuring dual-porosity/single-permeability and finite radial fluid discharge[J]. Journal of Petroleum Science and Engineering, 2019, 174: 790-803.
[110] Gamson P, Beamish B, Johnson D. Coal microstructure and secondary mineralization: Their effect on methane recovery[J]. Geological Society, London, Special Publications, 1996, 109(1): 165-179.
[111] 傅雪海,秦勇,李贵中. 储层渗透率研究的新进展[J]. 辽宁工程技术大学学报(自然科学版),2001,20(6):739-743.

Fu Xuehai, Qin Yong, Li Guizhong. Advance in study of coal reservoir Perme AtingAbility[J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(6): 739-743.
[112] Zhou H W, Zhong J C, Ren W G, et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method[J]. International Journal of Coal Geology, 2018, 189: 35-49.
[113] 刘世奇,桑树勋,杨延辉,等. 基于低场核磁共振的高阶煤平行与垂直层理结构特征[J]. 煤炭科学技术,2018,46(10):110-116.

Liu Shiqi, Sang Shuxun, Yang Yanhui, et al. Structure features of high rank coal in parallel bedding and vertical bedding based on low field nuclear magnetic resonance[J]. Coal Science and Technology, 2018, 46(10): 110-116.
[114] Sampath K H S M, Perera M S A, Ranjith P G, et al. Qualitative and quantitative evaluation of the alteration of micro-fracture characteristics of supercritical CO2-interacted coal[J]. The Journal of Supercritical Fluids, 2019, 147: 90-101.
[115] Mazumder S, Wolf K H A A, Elewaut K, et al. Application of X-ray computed tomography for analyzing cleat spacing and cleat aperture in coal samples[J]. International Journal of Coal Geology, 2006, 68(3/4): 205-222.
[116] Lu X, Armstrong R T, Mostaghimi P. High-pressure X-ray imaging to interpret coal permeability[J]. Fuel, 2018, 226: 573-582.
[117] Wu H, Zhou Y F, Yao Y B, et al. Imaged based fractal characterization of micro-fracture structure in coal[J]. Fuel, 2019, 239: 53-62.
[118] Zhang Y H, Lebedev M, Jing Y, et al. In-situ X-ray micro-computed tomography imaging of the microstructural changes in water-bearing medium rank coal by supercritical CO2 flooding[J]. International Journal of Coal Geology, 2019, 203: 28-35.
[119] Silin D, Patzek T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and its Applications, 2006, 371(2): 336-360.
[120] Knackstedt M A, Arns C H, Saadatfar M, et al. Virtual materials design: Properties of cellular solids derived from 3D tomographic images[J]. Advanced Engineering Materials, 2005, 7(4): 238-243.
[121] Yao J, Wang C C, Yang, Y F, et al. The construction of carbonate digital rock with hybrid superposition method[J]. Journal of Petroleum Science and Engineering, 2013, 110: 263-267.
[122] Lindquist W B, Venkatarangan A, Dunsmuir J, et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21509-21527.
[123] Øren P E, Bakke S. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects[J]. Journal of Petroleum Science and Engineering, 2003, 39(3/4): 177-199.
[124] Prodanović M, Lindquist W B, Seright R S. 3D image-based characterization of fluid displacement in a Berea core[J]. Advances in Water Resources, 2007, 30(2): 214-226.
[125] Sok R M, Knackstedt M A, Sheppard A P, et al. Direct and stochastic generation of network models from tomographic images; effect of topology on residual saturations[J]. Transport in Porous Media, 2002, 46(2/3): 345-371.
[126] Okabe H, Blunt M J. Pore space reconstruction using multiple-point statistics[J]. Journal of Petroleum Science and Engineering, 2005, 46(1/2): 121-137.
[127] Arns C H, Bauget F, Limaye A, et al. Pore scale characterization of carbonates using X-ray microtomography[J]. SPE Journal, 2005, 10(4): 475-484.
[128] Lee G C, Baek W P, Chang S H. Improved methodology for generation of axial flux shapes in digital core protection systems[J]. Annals of Nuclear Energy, 2002, 29(7): 805-819.
[129] Lee G C, Chang S H. Radial basis function networks applied to DNBR calculation in digital core protection systems[J]. Annals of Nuclear Energy, 2003, 30(15): 1561-1572.
[130] 毕建军,苏现波,韩德馨,等. 煤层割理与煤级的关系[J]. 煤炭学报,2001,26(4):346-349.

Bi Jianjun, Su Xianbo, Han Dexin, et al. The relation between cleat frequency and coal rank[J]. Journal of China Coal Society, 2001, 26(4): 346-349.
[131] Hakimi M H, Abdullah W H, Alias F L, et al. Organic petrographic characteristics of Tertiary (Oligocene–Miocene) coals from eastern Malaysia: Rank and evidence for petroleum generation[J]. International Journal of Coal Geology, 2013, 120: 71-81.
[132] Mathews J P, Chaffee A L. The molecular representations of coal-A review[J]. Fuel, 2012, 96: 1-14.
[133] Mathews J P, van Duin A C T, Chaffee A L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728.
[134] 杨忠亮. 低煤阶煤煤层气地质研究综述[J]. 河南科技,2019(20):81-83.

Yang Zhongliang. Summary of geological study on low coal rank coal seam gas[J]. Henan Science and Technology, 2019(20): 81-83.
[135] 陈振宏,贾承造,宋岩,等. 高煤阶与低煤阶煤层气藏物性差异及其成因[J]. 石油学报,2008,29(2):179-184.

Chen Zhenhong, Jia Chengzao, Song Yan, et al. Differences and origin of physical properties of low-rank and high-rank coal-bed methanes[J]. Acta Petrolei Sinica, 2008, 29(2): 179-184.
[136] 邹艳荣,杨起. 煤中的孔隙与裂隙[J]. 中国煤田地质,1998,10(4):39-40.

Zou Yanrong, Yang Qi. Pore and fracture in coal[J]. Coal Geology of China, 1998, 10(4): 39-40.
[137] 刘大锰,李振涛,蔡益栋. 煤储层孔-裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术,2015,43(2):10-15.

Liu Dameng, Li Zhentao, Cai Yidong. Study progress on pore-crack heterogeneity and geological influence factors of coal reservoir[J]. Coal Science and Technology, 2015, 43(2): 10-15.
[138] Karacan C Ö, Okandan E. Fracture/cleat analysis of coals from Zonguldak Basin (northwestern Turkey) relative to the potential of coalbed methane production[J]. International Journal of Coal Geology, 2000, 44(2): 109-125.
[139] 张泓,王绳祖,郑玉柱,等. 古构造应力场与低渗煤储层的相对高渗区预测[J]. 煤炭学报,2004,29(6):708-711.

Zhang Hong, Wang Shengzu, Zheng Yuzhu, et al. Palaeotectonic stress-fields and prediction of higher-permeability region for coalbed methane exploration in low-permeability coal reservoirs[J]. Journal of China Coal Society, 2004, 29(6): 708-711.
[140] 姜波,琚宜文. 构造煤结构及其储层物性特征[J]. 天然气工业,2004,24(5):27-29.

Jiang Bo, Ju Yiwen. Tectonic coal structure and its petrophysical features[J]. Natural Gas Industry, 2004, 24(5): 27-29.
[141] Zeng L B, Qi J F, Li Y G. The relationship between fractures and tectonic stress field in the extra low-permeability sandstone reservoir at the south of western Sichuan Depression[J]. Journal of China University of Geosciences, 2007, 18(3): 223-231.
[142] Wang S G, Elsworth D, Liu J S. Permeability evolution in fractured coal: The roles of fracture geometry and water-content[J]. International Journal of Coal Geology, 2011, 87(1): 13-25.
[143] Su X B, Lin X Y, Liu S B, et al. Geology of coalbed methane reservoirs in the southeast Qinshui Basin of China[J]. International Journal of Coal Geology, 2005, 62(4): 197-210.
[144] 苏现波,宁超,华四良. 煤层气储层中的流体压裂裂隙[J]. 天然气工业,2005,25(1):127-129.

Su Xianbo, Ning Chao, Hua Siliang. Fluid pressure-dependent fractures in coal-bed gas reservoirs[J]. Natural Gas Industry, 2005, 25(1): 127-129.
[145] 琚宜文,姜波,侯泉林,等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报,2005,79(2):269-285.

Ju Yiwen, Jiang Bo, Hou Quanlin. Structural evolution of nano-scale pores of tectonic coals in southern North China and its mechanism[J]. Acta Geologica Sinica, 2005, 79(2): 269-285.
[146] 李明. 构造煤结构演化及成因机制[D]. 徐州:中国矿业大学,2013.

Li Ming. Structure evolution and deformation mechanism of tectonically deformed coal[D]. Xuzhou: China University of Mining and Technology, 2013.
[147] 么玉鹏. 脆性变形系列构造煤物性特征及其结构定量表征[D]. 徐州:中国矿业大学,2017.

Yao Yupeng. Physical properties of brittle deformation series tectonically deformed coal and quantitative characterization of its structure[D]. Xuzhou: China University of Mining and Technology, 2017.
[148] 黄华州. 远距离被保护层卸压煤层气地面井开发地质理论及其应用研究:以淮南矿区为例[D]. 徐州:中国矿业大学,2010.

Huang Huazhou. Study on geological theories of stress relief coalbed methane drainage from the distant protected seam by vertical surface wells and their application in Huainan coal mine area[D]. Xuzhou: China University of Mining and Technology, 2010.
[149] 要惠芳,康志勤,李伟. 典型构造煤变形特征及储集层物性[J]. 石油勘探与开发,2014,41(4):414-420.

Yao Huifang, Kang Zhiqin, Li Wei. Deformation and reservoir properties of tectonically deformed coals[J]. Petroleum Exploration and Development, 2014, 41(4): 414-420.
[150] 侯锦秀,张玉贵,张进春. 构造煤原生结构煤微孔特征的多重统计对比及其差异成因机制[J]. 安全与环境学报,2018,18(1):139-146.

Hou Jinxiu, Zhang Yugui, Zhang Jinchun. Multiple statistical comparison of the micropore structures between the tectonically deformed and undeformed coal particles and cause analysis of the difference[J]. Journal of Safety and Environment, 2018, 18(1): 139-146.
[151] 侯锦秀,王宝俊,张玉贵,等. 不同煤级煤的微孔介孔演化特征及其成因[J]. 煤田地质与勘探,2017,45(5):75-81.

Hou Jinxiu, Wang Baojun, Zhang Yugui, et al. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. Coal Geology & Exploration, 2017, 45(5): 75-81.
[152] Li M, Jiang B, Lin S F, et al. Tectonically deformed coal types and pore structures in Puhe and Shanchahe coal mines in western Guizhou[J]. Mining Science and Technology, 2011, 21(3): 353-357.
[153] Song Y, Jiang B, Mathews J P, et al. Structural transformations and hydrocarbon generation of low-rank coal (vitrinite) during slow heating pyrolysis[J]. Fuel Processing Technology, 2017, 167: 535-544.
[154] 郭德勇,郭晓洁,李德全. 构造变形对烟煤级构造煤微孔—中孔的作用[J]. 煤炭学报,2019,44(10):3135-3144.

Guo Deyong, Guo Xiaojie, Li Dequan. Effects of tectonic deformation on micropore mesopore of bituminous deformed coal[J]. Journal of China Coal Society, 2019, 44(10): 3135-3144.
[155] 琚宜文,李小诗. 构造煤超微结构研究新进展[J]. 自然科学进展,2009,19(2):131-140.

Ju Yiwen, Li Xiaoshi. New progress in the study on the microstructure of deformed coal[J]. Progress in Natural Science, 2009, 19(2): 131-140.
[156] 屈争辉,姜波,汪吉林,等. 构造煤结构演化及其应力—应变环境[J]. 高校地质学报,2012,18(3):453-459.

Qu Zhenghui, Jiang Bo, Wang Jilin, et al. Evolution of textures and stress-strain environments of tectonically-deformed coals[J]. Geological Journal of China Universities, 2012, 18(3): 453-459.
[157] 陈玮胤,姜波,屈争辉,等. 碎裂煤显微裂隙分形结构及其孔渗特征[J]. 煤田地质与勘探,2012,40(2):31-34.

Chen Weiyin, Jiang Bo, Qu Zhenghui, et al. Fractal structure of microfractures and characteristics of porosity and permeability in cataclastic coals[J]. Coal Geology & Exploration, 2012, 40(2): 31-34.
[158] 华四良,苏现波. 煤中裂隙脉的形成机理[J]. 煤田地质与勘探,2004,32(3):9-11.

Hua Siliang, Su Xianbo. The formation regimes of veins in fractures of coal[J]. Coal Geology & Exploration, 2004, 32(3): 9-11.
[159] 段连秀,王生维,张明. 煤储层中裂隙充填物的特征及其研究意义[J]. 煤田地质与勘探,1999,27(3):33-35.

Duan Lianxiu, Wang Shengwei, Zhang Ming. The characteristics of the fracture fillings in coal reservoirs and its study significance[J]. Coal Geology & Exploration, 1999, 27(3): 33-35.