[1] Tucker M E. Sedimentary petrology: An introduction to the origin of sedimentary rocks[M]. 2nd ed. Oxford: Blackwell, 1991:31.
[2] 王成善,胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2):11-21.

Wang Chengshan, Hu Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
[3] Hu X M, Scott R W, Cai Y F, et al. Cretaceous oceanic red beds (CORBs): Different time scales and models of origin[J]. Earth-Science Reviews, 2012, 115(4): 217-248.
[4] 吕璇,刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展,2017,32(12):1307-1318.

Xuan Lü, Liu Zhifei. Distribution, compositions and significance of oceanic red beds[J]. Advances in Earth Science, 2017, 32(12): 1307-1318.
[5] Lindskog A. Early–Middle Ordovician biotic and sedimentary dynamics in the baltoscandian paleobasin[D]. Lund: Lund University, 2017: 1-115.
[6] Liu J B, Wang Y, Zhang X L, et al. Early Telychian (Silurian) marine siliciclastic red beds in the eastern Yangtze Platform, South China: Distribution pattern and controlling factors[J]. Canadian Journal of Earth Sciences, 2016, 53(7): 712-718.
[7] Rong J Y, Wang Y, Zhang X L. Tracking shallow marine red beds through geological time as exemplified by the Lower Telychian (Silurian) in the Upper Yangtze region, South China[J]. Science China Earth Sciences, 2012, 55(5): 699-713.
[8] Liu M, Chen D Z, Zhou X Q, et al. Upper Ordovician marine red limestones, Tarim Basin, NW China: A product of an oxygenated deep ocean and changing climate?[J]. Global and Planetary Change, 2019, 183: 103032.
[9] Liu X C, Hou M C, Chang X L, et al. Formation of Late Ordovician marine red beds: A case study of Sandbian deposits in the Tarim Basin, northwest China[J]. Global and Planetary Change, 2021, 207: 103669.
[10] Luan X C, Brett C E, Zhan R B, et al. Middle-Late Ordovician iron-rich nodules on Yangtze Platform, South China, and their palaeoenvironmental implications[J]. Lethaia, 2018, 51(4): 523-537.
[11] Luan X C, Zhang X L, Wu R C, et al. Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110116.
[12] 林宝玉,任纪舜,李明,等. 中国主要块体奥陶纪达瑞威尔期(Darriwilian)晚期—凯迪期(Katian)早期海相红层及其构造意义[J]. 地质学报,2018,92(10):2002-2017.

Lin Baoyu, Ren Jishun, Li Ming, et al. Late Darriwilian to Early Katian (Ordovician) marine red beds from the main blocks in China and their tectonic significance[J]. Acta Geologica Sinica, 2018, 92(10): 2002-2017.
[13] Turner P. Diagenetic origin of Cambrian marine red beds: Caerfai Bay shales, Dyfed, Wales[J]. Sedimentary Geology, 1979, 24(3/4): 269-281.
[14] Elorza J, Gómez-Alday J J, Jiménez Berrocoso Á. Syndepositional processes in the pigmentation of oceanic red beds: Evidence from the Basque-Cantabrian Basin (northern Spain)[J]. Geological Magazine, 2021, 158(9): 1683-1703.
[15] Chen X, Wang C S, Kuhnt W, et al. Lithofacies, microfacies and depositional environments of Upper Cretaceous oceanic red beds (Chuangde Formation) in southern Tibet[J]. Sedimentary Geology, 2011, 235(1/2): 100-110.
[16] Wang C S, Hu X M, Huang Y J, et al. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events[J]. Sedimentary Geology, 2011, 235(1/2): 27-37.
[17] Li X, Cai Y F. Constraining the colouration mechanisms of cretaceous oceanic red beds using diffuse reflectance spectroscopy[J]. Cretaceous Research, 2013, 46: 257-266.
[18] Song H J, Jiang G Q, Poulton S W, et al. The onset of widespread marine red beds and the evolution of ferruginous oceans[J]. Nature Communications, 2017, 8(1): 399.
[19] 伊海生,林金辉,赵兵,等. 藏北羌塘地区地层新资料[J]. 地质论评,2003,49(1):59-65.

Yi Haisheng, Lin Jinhui, Zhao Bing, et al. New biostratigraphic data of the Qiangtang area in the northern Tibetan Plateau[J]. Geological Review, 2003, 49(1): 59-65.
[20] 曾胜强,王剑,陈明,等. 北羌塘盆地索瓦组上段的时代、古气候及石油地质特征[J]. 现代地质,2012,26(1):10-21.

Zeng Shengqiang, Wang Jian, Chen Ming, et al. Geological age, paleoclimate and petroleum geological characteristics of the upper part of the Suowa Formation in the north Qiangtang Basin[J]. Geoscience, 2012, 26(1): 10-21.
[21] Yin J R. Bathonian–Callovian (Middle Jurassic) ammonites from northwestern Qiangtang Block, Tibet, and the revised age of the Suowa Formation[J]. Proceedings of the Geologists' Association, 2016, 127(2): 247-265.
[22] 赵兵,陈海霞. 西藏双湖托拉木地区侏罗系索瓦组地层古生物[J]. 成都理工大学学报(自然科学版),2009,36(2):177-181.

Zhao Bing, Chen Haixia. Stratigraphy and palaeontology of the Jurassic Suowa Formation in Tuolamu of Shuanghu, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 36(2): 177-181.
[23] Yang R F, Cao J, Hu G, et al. Marine to brackish depositional environments of the Jurassic–Cretaceous Suowa Formation, Qiangtang Basin (Tibet), China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473: 41-56.
[24] Liu M, Ji C J, Hu H W, et al. Variations in microbial ecology during the Toarcian Oceanic Anoxic Event (Early Jurassic) in the Qiangtang Basin, Tibet: Evidence from biomarker and carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 580: 110626.
[25] Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles[J]. Geophysical Research Letters, 2003, 30(20): 2058.
[26] Scheinost A C, Chavernas A, Barrón V, et al. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils[J]. Clays and Clay Minerals, 1998, 46(5): 528-536.
[27] Torrent J, Liu Q S, Bloemendal J, et al. Magnetic enhancement and iron oxides in the upper Luochuan loess-paleosol sequence, Chinese Loess Plateau[J]. Soil Science Society of America Journal, 2007, 71(5): 1570-1578.
[28] Zhang X L, Wang Y, Rong J Y, et al. Pigmentation of the Early Silurian shallow marine red beds in South China as exemplified by the Rongxi Formation of Xiushan, southeastern Chongqing, central China[J]. Palaeoworld, 2014, 23(3/4): 240-251.
[29] Hu X M, Zhao K D, Yilmaz I O, et al. Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey[J]. Cretaceous Research, 2012, 38: 40-51.
[30] Mamet B, Préat A. Iron-bacterial mediation in Phanerozoic red limestones: State of the art[J]. Sedimentary Geology, 2006, 185(3/4): 147-157.
[31] Préat A R, de Jong J T M, Mamet B L, et al. Stable iron isotopes and microbial mediation in red pigmentation of the Rosso Ammonitico (mid-Late Jurassic, Verona area, Italy)[J]. Astrobiology, 2008, 8(4): 841-857.
[32] Cai Y F, Li X, Hu X M, et al. Paleoclimatic approach to the origin of the coloring of Turonian pelagic limestones from the Vispi Quarry section (Cretaceous, central Italy)[J]. Cretaceous Research, 2009, 30(5): 1205-1216.
[33] 蔡元峰,李响,潘宇观,等. Mn2+和Fe3+的致色作用:来自意大利白垩纪远洋红色灰岩的启示[J]. 地质学报,2008,82(1):133-138.

Cai Y F, Li X, Pan Y G, et al. The color-causing mechanism of Mn2+ and Fe3+: Evidence from the Italian Cretaceous pelagic red limestones[J]. Acta Geologica Sinica, 2008, 82(1): 133-138.
[34] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
[35] Liu M, Chen D Z, Jiang L, et al. Oceanic anoxia and extinction in the latest Ordovician[J]. Earth and Planetary Science Letters, 2022, 588: 117553.
[36] Zhao Y Y, Wei W, Li S Z, et al. Rare earth element geochemistry of carbonates as a proxy for deep-time environmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 574: 110443.
[37] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.
[38] Shields G A, Webb G E. Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 2004, 204(1/2): 103-107.
[39] Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin[J]. Chemical Geology, 2012, 291: 152-165.
[40] Wang Z, Guo W, Nie T, et al. Is seawater geochemical composition recorded in marine carbonate? Evidence from iron and manganese contents in Late Devonian carbonate rocks[J]. Acta Geochimica, 2019, 38(2): 173-189.
[41] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
[42] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.
[43] de Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1943-1959.
[44] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
[45] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in south east Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
[46] Wallace M W, Hood A V, Shuster A, et al. Oxygenation history of the Neoproterozoic to Early Phanerozoic and the rise of land plants[J]. Earth and Planetary Science Letters, 2017, 466: 12-19.
[47] 李朋威,周川闽,金廷福,等. 太原西山七里沟剖面本溪组铁质鲕粒成因探讨[J]. 沉积学报,2013,31(3):396-403.

Li Pengwei, Zhou Chuanmin, Jin Tingfu, et al. Origin of the ferriferous ooids in the Benxi Formation at the Qiligou section, Taiyuan Xishan[J]. Acta Sedimentologica Sinica, 2013, 31(3): 396-403.
[48] 陈蕾,张洪霞,李莹,等. 微生物在地球化学铁循环过程中的作用[J]. 中国科学:生命科学,2016,46(9):1069-1078.

Chen Lei, Zhang Hongxia, Li Ying, et al. The role of microorganisms in the geochemical iron cycle[J]. Scientia Sinica Vitae, 2016, 46(9): 1069-1078.
[49] Melton E D, Swanner E D, Behrens S, et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 2014, 12(12): 797-808.
[50] Sobolev D, Roden E E. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH[J]. Applied and Environmental Microbiology, 2001, 67(3): 1328-1334.