[1] Aboglila S, Grice K, Trinajstic K, et al. The significance of 24-norcholestanes, 4-methylsteranes and dinosteranes in oils and source-rocks from East Sirte Basin (Libya)[J]. Applied Geochemistry, 2011, 26 (9/10): 1694-1705.
[2] Brocks J J, Summons R E. Sedimentary hydrocarbons, biomarkers for early life[J]. Treatise on Geochemistry, 2003, 8: 63-115.
[3] Whiteside J H, Grice K. Biomarker records associated with mass extinction events[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 581-612.
[4] Wang Y L, Fang X M, Bai Y, et al. Macrocyclic alkanes in modern soils of China[J]. Organic Geochemistry, 2006, 37(2): 146-151.
[5] Wang Z D, Stout S A, Fingas M. Forensic fingerprinting of biomarkers for oil spill characterization and source identification[J]. Environmental Forensics, 2006, 7(2): 105-146.
[6] Wang Z D, Yang C, Yang Z Y, et al. Petroleum biomarker fingerprinting for oil spill characterization and source identification[M]//Stout S A, Wang Z D. Standard handbook oil spill environmental forensics. 2nd ed. Amsterdam: Elsevier, 2016: 131-254.
[7] Red'kina N N, Bryanskii O V, Krasnov E A, et al. Components of plants of the Empetraceae family. III. Cycloalkanes from Empetrum nigrum[J]. Chemistry of Natural Compounds, 1989, 25(5): 614-615.
[8] Baik S O, Bock J Y, Han S B, et al. Analysis of volatile flavor constituents in Green Tea Flower[J]. Analytical Science and Technology, 1996, 9(4): 331-335.
[9] Mimica-Dukić N, Ivančev-Tumbas I, Igić R, et al. The content and composition of essential oil of Hypericum perforatum L. from Serbia[J]. Pharmaceutical and Pharmacological Letters, 1998.
[10] Knothe G, Razon L F, De Castro M E G. Fatty acids, triterpenes and cycloalkanes in ficus seed oils[J]. Plant Physiology and Biochemistry, 2019, 135: 127-131.
[11] Müürisepp A M, Urov K, Liiv M, et al. A comparative study of non-aromatic hydrocarbons from kukersite and dictyonema shale semicoking oils[J]. Oil Shale, 1994, 11(3): 211-216.
[12] Audino M, Grice K, Alexander R, et al. Macrocyclic-alkanes: A new class of biomarker[J]. Organic Geochemistry, 2001, 32(5): 759-763.
[13] Audino M, Grice K, Alexander R, et al. Macrocyclic alkanes: Markers for the freshwater alga Botryococcus braunii in the Gippsland Basin[J]. The APPEA Journal, 2002, 42(1): 437-441.
[14] Audino M, Grice K, Alexander R, et al. Macrocyclic alkanes in crude oils from the algaenan of Botryococcus braunii [J]. Organic Geochemistry, 2002, 33(8): 979-984.
[15] Grice K, Audino M, Boreham C J, et al. Distributions and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations[J]. Organic Geochemistry, 2001, 32(10): 1195-1210.
[16] Zhang Z R, Volkman J K. Isotopically enriched n-alkan-2-ones with even chain predominance in a torbanite from the Sydney Basin, Australia[J]. Organic Geochemistry, 2020, 144: 104018.
[17] Fu Y, Li W, Manheim J M, et al. Proton affinities of alkanes[J]. Journal of the American Society for Mass Spectrometry, 2022, 33(10): 1850-1857.
[18] Audino M, Grice K, Alexander R, et al. Macrocyclic alkanes in crude oils and sediment extracts: Enrichment using molecular sieves[J]. Organic Geochemistry, 2004, 35(5): 661-663.
[19] Püttmann W, Villar H. Occurrence and geochemical significance of 1,2,5,6-tetramethylnaphthalene[J]. Geochimica et Cosmochimica Acta, 1987, 51(11): 3023-3029.
[20] Killops S D. Novel aromatic hydrocarbons of probable bacterial origin in a Jurassic lacustrine sequence[J]. Organic Geochemistry, 1991, 17(1): 25-36.
[21] Derenne S, Largeau C, Casadevall E, et al. Comparison of torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Causes of the lack of botryococcane in bitumens[J]. Organic Geochemistry, 1988, 12(1): 43-59.
[22] Gelin F, De Leeuw J W, Damsté J S S, et al. The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble algaenan in the green microalga Botryococcus braunii race A as revealed by analytical pyrolysis[J]. Organic Geochemistry, 1994, 21(5): 423-435.
[23] Zuo H L, Yang F Q, Huang W H, et al. Preparative gas chromatography and its applications[J]. Journal of Chromatographic Science, 2013, 51(7): 704-715.
[24] Riache N, Callens E, Samantaray M K, et al. Cyclooctane metathesis catalyzed by silica‐supported tungsten pentamethyl [(≡SiO)W(Me)5]: Distribution of macrocyclic alkanes[J]. Chemistry–A European Journal, 2014, 20(46): 15089-15094.
[25] Stevenson D P. The mass spectra of methylcyclopentane and methyl-C13-cyclopentane[J]. Journal of the American Chemical Society, 1958, 80(7): 1571-1573.
[26] McLafferty F W. Mass spectrometric analysis. Molecular rearrangements[J]. Analytical Chemistry, 1959, 31(1): 82-87.
[27] Abramson F P, Futrell J H. Mass-spectrometric investigation of ion-molecule reactions in cyclohexane[J]. The Journal of Physical Chemistry, 1967, 71(12): 3791-3796.
[28] McLafferty F W. Mass spectrometry of organic ions[M]. Pittsburgh: Academic Press, 1963: 55-59.
[29] Lias S G, Viscomi A, Field F H. Chemical ionization mass spectra. XXI. Reactions in tert-pentyl chloride, tert-pentyl bromide, tert-pentyl alcohol, and tert-pentyl mercaptan[J]. Journal of the American Chemical Society, 1974, 96(2): 359-364.
[30] McLafferty F W. Unimolecular decompositions of even‐electron ions[J]. Organic Mass Spectrometry, 1980, 15(3): 114-121.
[31] 王光辉,熊少祥. 有机质谱解析[M]. 北京:化学工业出版社,2005:41-44.

Wang Guanghui, Xiong Shaoxiang. Organic matter spectrum analysis[M]. Beijing: Chemical Industry Press, 2005: 41-44.
[32] Dias J R, Djerassi C. Mass spectrometry in structural and stereochemical problems-CCXVI: Anomalous cleavage ions in bifunctional compounds resulting from participative interaction[J]. Organic Mass Spectrometry, 1972, 6(4): 385-406.
[33] Weinkam R J. Importance of intramolecular associations in the chemical ionization mass spectra of monoenoic and monoepoxy fatty acid methyl esters[J]. Journal of the American Chemical Society, 1974, 96(4): 1032-1037.
[34] McLafferty F W. A generalized mechanism for mass spectral reactions[J]. Chemical Communications (London), 1966(3): 78-80.
[35] McLafferty F W, Turecek F. Interpretation of mass spectra[M]. 4th ed. Sausallto: University Science Books, 1993: 41-46.
[36] Friedman L, Long F A. Mass spectra of six lactones[J]. Journal of the American Chemical Society, 1953, 75(12): 2832-2836.
[37] Volkman J K. Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus [J]. Organic Geochemistry, 2014, 75: 36-47.
[38] Metzger P, Casadevall E. Botryals, even C52-C64 aldehydes from aldol condensation, in the a race of the green alga botryococcus Braunii [J]. Tetrahedron Letters, 1988, 29(23): 2831-2834.
[39] Dong J Z, Vorkink W P, Lee M L. Origin of long-chain alkylcyclohexanes and alkylbenzenes in a coal-bed wax[J]. Geochimica et Cosmochimica Acta, 1993, 57(4): 837-849.
[40] Metzger P, Rager M N, Fosse C. Braunicetals: Acetals from condensation of macrocyclic aldehydes and terpene diols in Botryococcus braunii [J]. Phytochemistry, 2008, 69(12): 2380-2386.
[41] Grossi V, De Mesmay R, Bardoux G, et al. Contrasting variations in the structure and stable carbon isotopic composition of botryococcenes through the last glacial–interglacial transition in Lake Masoko (southern Tanzania) [J]. Organic Geochemistry, 2012, 43: 150-155.
[42] Metzger P, Largeau C, Casadevall E. Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococcus braunii. Chemical structure and biosynthesis. Geochemical and biotechnological importance[M]//Casadevall E, Chakraborty D P, Largeau C, et al. Fortschritte der chemie organischer naturstoffe/progress in the chemistry of organic natural products. Vienna: Springer, 1991: 1-70.
[43] Metzger P, Pouet Y, Bischoff R, et al. An aliphatic polyaldehyde from Botryococcus braunii (A race)[J]. Phytochemistry, 1993, 32(4): 875-883.
[44] Bertheas O, Metzger P, Largeau C. A high molecular weight complex lipid, aliphatic polyaldehyde tetraterpenediol polyacetal from Botryococcus braunii (L race)[J]. Phytochemistry, 1999, 50(1): 85-96.
[45] Bielawski C W, Benitez D, Grubbs R H. An" endless" route to cyclic polymers[J]. Science, 2002, 297(5589): 2041-2044.
[46] Haque F M, Grayson S M. The synthesis, properties and potential applications of cyclic polymers[J]. Nature Chemistry, 2020, 12(5): 433-444.