[1] Maity H, Mazumder B S. Prediction of plane-wise turbulent events to the Reynolds stress in a flow over scour-bed[J]. Environmetrics, 2017, 28(4): e2442.
[2] Hall J.Geology of New-York: Part IV Comprising the survey of the Fourth Geolo[M] .Andesite Press,1843(1):433-435.
[3] Peabody F E. Current crescents in the Triassic Moenkopi Formation [Arizona][J]. Journal of Sedimentary Research, 1947, 17(2): 73-76.
[4] Karcz I. Fluviatile obstacle marks from the Wadis of the Negev (southern Israel)[J]. Journal of Sedimentary Research, 1968, 38(4): 1000-1012.
[5] Richardson P D. The generation of scour marks near obstacles[J]. Journal of Sedimentary Research, 1968, 38(4): 965-970.
[6] Allen J R L. Sedimentary structures, their character and physical basis[M]. Amsterdam: Elsevier, 1982.
[7] Mazumder B S, Maity H, Chadda T. Turbulent flow field over fluvial obstacle marks generated in a laboratory flume[J]. International Journal of Sediment Research, 2011, 26(1): 62-77.
[8] 马维俊,吕四. 明岛现代潮坪沉积特征[J]. 煤田地质与勘探,1988(5):16-18.

Ma Weijun, Si Lü. Sedimentary characteristics of modern tidepools on Chongming Island[J]. Coalfield Geology and Exploration, 1988(5):16-18.
[9] 张昌民. 现代荆江江心洲沉积[J]. 沉积学报,1992(4):146-153.

Zhang Changmin. Modern channel islands deposits in Jingjiang reach of Yangtze River[J]. Acta Sedimentologica Sinica, 1992(4): 146-153.
[10] 邱隆伟,周军良,姜在兴,等. 峡山湖沙坝的现代沉积[J]. 海洋地质与第四纪地质,2009,29(4):135-141.

Qiu Longwei, Zhou Junliang, Jiang Zaixing, et al. A recent sedimentary study on sand bar in Xiashan Lake[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 135-141.
[11] 张昌民,郭旭光,刘帅,等. 现代乌伦古湖滨岸沉积环境与沉积体系分布及其控制因素[J]. 第四纪研究,2020,40(1):49-68.

Zhang Changmin, Guo Xuguang, Liu Shuai, et al. Modern sedimentary environment and depositional system on the coast of Ulungur Lake: Their classification, distribution and characteristics[J]. Quaternary Sciences, 2020, 40(1): 49-68.
[12] 王昊,崔鹏, Carling P A. 高能洪水沉积研究综述[J]. 地学前缘,2021,28(2):140-167.

Wang Hao, Cui Peng, Carling P A. The sedimentology of high-energy outburst flood deposits: An overview[J]. Earth Science Frontiers, 2021, 28(2): 140-167.
[13] 初秀民,聂梓熠,刘怀汉,等. 航道水沙要素移动测量技术研究综述[J]. 水利水运工程学报,2022(2):1-10.

Chu Xiumin, Nie Ziyi, Liu Huaihan, et al. Review of mobile measurement research on multiple water and sediment elements of waterway[J]. Hydro-Science and Engineering, 2022(2): 1-10.
[14] 陈友媛,刘红军,贾永刚,等. 循环荷载作用下海床结构粉质土的液化渗流机理定性研究[J]. 岩土力学,2007,28(8):1631-1635.

Chen Youyuan, Liu Hongjun, Jia Yonggang, et al. Qualitative study on mechanism of liquefaction and seepage of seabed structure silty soil under cyclic loads[J]. Rock and Soil Mechanics, 2007, 28(8): 1631-1635.
[15] Herget J, Euler T, Roggenkamp T, et al. Obstacle marks as palaeohydraulic indicators of Pleistocene megafloods[J]. Hydrology Research, 2013, 44(2): 300-317.
[16] Corenblit D, Vidal V, Cabanis M, et al. Seed retention by pioneer trees enhances plant diversity resilience on gravel bars: Observations from the River Allier, France[J]. Advances in Water Resources, 2016, 93: 182-192.
[17] 耿英英,刘章月,黄少华,等. 准噶尔盆地南缘头屯河地区砂岩型铀矿成矿环境与找矿方向[J]. 铀矿地质,2022,38(2):194-206.

Geng Yingying, Liu Zhangyue, Huang Shaohua, et al. Metallogenic environment and prospecting direction of sandstone type uranium deposits in Toutunhe area, southern margin of Junggar Basin[J]. Uranium Geology, 2022, 38(2): 194-206.
[18] 胡贵明,陈杰,覃金堂,等. 北天山安集海河大峡谷3.7 ka以来的快速下切[J]. 科学通报,2020,65(15):1506-1518.

Hu Guiming, Chen Jie, Qin Jintang, et al. Rapid incision events since 3.7 ka in the Anjihaihe gorge along the northern Tianshan range, China[J]. Chinese Science Bulletin, 2020, 65(15): 1506-1518.
[19] 刘海波. 气候变化对头屯河流域径流的影响研究[J]. 水利科技与经济,2021,27(1):58-61.

Liu Haibo. Study on the impact of climate change on the runoff of the Toutunhe basin[J]. Water Science and Technology and Economy, 2021, 27(1): 58-61.
[20] Purkis S J, Klemas V V. Geomorphic analysis of river systems: An approach to reading the landscape[J]. Blood, 2013, 73(8): 2104-2107.
[21] 张昌民,宋新民,王小军,等. 支撑砾岩的成因类型及其沉积特征[J]. 石油勘探与开发,2020,47(2):272-285.

Zhang Changmin, Song Xinmin, Wang Xiaojun, et al. Origin and depositional characteristics of supported conglomerates[J]. Petroleum Exploration and Development, 2020, 47(2): 272-285.
[22] Hassan M A, Woodsmith R D. Bed load transport in an obstruction-formed pool in a forest, gravelbed stream[J]. Geomorphology, 2004, 58(1/2/3/4): 203-221.
[23] Brandimarte L, Montanari A, Briaud J L, et al. Stochastic flow analysis for predicting river scour of cohesive soils[J]. Journal of Hydraulic Engineering, 2006, 132(5): 493-500.
[24] Quinn R. The role of scour in shipwreck site formation processes and the preservation of wreck-associated scour signatures in the sedimentary record: Evidence from seabed and sub-surface data[J]. Journal of Archaeological Science, 2006, 33(10): 1419-1432.
[25] Chreties C, Simarro G, Teixeira L. New experimental method to find equilibrium scour at bridge piers[J]. Journal of Hydraulic Engineering, 2008, 134(10): 1491-1495.
[26] Euler T, Zemke J, Rodrigues S, et al. Influence of inclination and permeability of solitary woody riparian plants on local hydraulic and sedimentary processes[J]. Hydrological Processes, 2014(1): 477-483.
[27] Schlömer O, Herget J, Euler T. Boundary condition control of fluvial obstacle mark formation: Framework from a geoscientific perspective[J]. Earth Surface Processes and Landforms, 2020, 45(1): 189-206.
[28] Montgomery D R, Buffington J M. Channel-reach morphology in mountain drainage basins[J]. GSA Bulletin, 1997, 109(5): 596-611.
[29] Euler T, Herget J, Schlömer O, et al. Hydromorphological processes at submerged solitary boulder obstacles in streams[J]. CATENA, 2017, 157: 250-267.
[30] Roulund A, Sumer B M, Fredsøe J, et al. Numerical and experimental investigation of flow and scour around a circular pile[J]. Journal of Fluid Mechanics, 2005, 534: 351-401.
[31] 司学强,袁波,彭博,等. 准噶尔盆地南缘冲断带侏罗系喀拉扎组沉积特征[J]. 新疆石油地质,2021,42(4):389-398.

Si Xueqiang, Yuan Bo, Peng Bo, et al. Sedimentary characteristics of Jurassic Kalazha Formation in the thrust belt on the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2021, 42(4): 389-398.
[32] 张驰,于兴河,姚宗全,等. 准噶尔盆地南缘西段中、上侏罗统沉积演化及控制因素分析[J]. 中国地质,2021,48(1):284-296.

Zhang Chi, Yu Xinghe, Yao Zongquan, et al. Sedimentary evolution and controlling factors of the Middle-Upper Jurassic in the western part of the southern Junggar Basin[J]. Geology in China, 2021, 48(1): 284-296.
[33] 高志勇,周川闽,冯佳睿,等. 盆地内大面积砂体分布的一种成因机理:干旱气候下季节性河流沉积[J]. 沉积学报,2015,33(3):427-438.

Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Distribution of a large area of sand body formation mechanism: Ephemeral streams in arid climate[J]. Acta Sedimentologica Sinica, 2015, 33(3): 427-438.
[34] 关旭同,吴朝东,吴鉴,等. 准噶尔盆地南缘上侏罗统—下白垩统沉积序列及沉积环境演化[J]. 新疆石油地质,2020,41(1):67-79.

Guan Xutong, Wu Chaodong, Wu Jian, et al. Sedimentary sequence and depositional environment evolution of Upper Jurassic-Lower Cretaceous strata in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(1): 67-79.