[1] 张金川,徐波,聂海宽,等. 中国页岩气资源勘探潜力[J]. 天然气工业,2008,28(6):136-140.

Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140.
[2] 梁狄刚,郭彤楼,陈建平,等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质,2008,13(2):1-16.

Liang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
[3] 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报,2009,30(4):484-491.

Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4): 484-491.
[4] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[5] 肖贤明,周秦,程鹏,等. 高—过成熟海相页岩中矿物—有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(D辑):地球科学,2020,50(9):1228-1241.

Xiao Xianming, Zhou Qin, Cheng Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China (Seri. D): Earth Sciences, 2020, 50(9): 1228-1241.
[6] Zhang Y F, Yu B S, Pan Z J, et al. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103089.
[7] Nie H K, Jin Z J, Zhang J C. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China[J]. Scientific Reports, 2018, 8(1): 7014.
[8] Meyer K M, Kump L R. Oceanic euxinia in Earth history: Causes and consequences[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 251-288.
[9] Summons R E, Powell T G. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 557-566.
[10] Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
[11] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[12] Algeo T J, Liu J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 2020, 540: 119549.
[13] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[14] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[15] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643-645.
[16] Deming J W, Baross J A. The early diagenesis of organic matter: Bacterial activity[M]//Engel M H, Macko S A. Organic geochemistry. Boston: Springer, 1993.
[17] Keith S M, Herbert R A, Harfoot C G. Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments[J]. Journal of Applied Bacteriology, 1982, 53(1): 29-33.
[18] Rice C A, Tuttle M L, Reynolds R L. The analysis of forms of sulfur in ancient sediments and sedimentary rocks: Comments and cautions[J]. Chemical Geology, 1993, 107(1/2): 83-95.
[19] Debret B, Andreani M, Delacour A, et al. Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy[J]. Earth and Planetary Science Letters, 2017, 466: 1-11.
[20] Surdhar P, Armstrong D A. Redox potentials of some sulfur-containing radicals[J]. Journal of Physical Chemistry, 1986, 90(22): 5915-5917.
[21] Zheng G D, Xu W, Fortin D, et al. Sulfur speciation in marine sediments impacted by gas emissions in the northern part of the South China Sea[J]. Marine and Petroleum Geology, 2016, 73: 181-187.
[22] 何登发,鲁人齐,黄涵宇,等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发,2019,46(5):993-1006.

He Dengfa, Lu Renqi, Huang Hanyu, et al. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(5): 993-1006.
[23] 童崇光. 四川盆地构造演化与油气聚集[M]. 北京:地质出版社,1992.

Tong Chongguang. Tectonic evolution and hydrocarbon accumulation in Sichuan Basin[M]. Beijing: Geological Publishing House, 1992.
[24] 郭正吾,邓康龄,韩永辉. 四川盆地形成与演化[M]. 北京:地质出版社,1996.

Guo Zhengwu, Deng Kangling, Han Yonghui. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996.
[25] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606.

He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606.
[26] 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学,2019,44(3):738-755.

Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-Early Cambrian tectonic-sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
[27] 冯增昭,彭勇民,金振奎,等. 中国南方寒武纪岩相古地理[J]. 古地理学报,2001,3(1):1-14.

Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Cambrian in South China[J]. Journal of Palaeogeography, 2001, 3(1): 1-14.
[28] 王玉满,沈均均,邱振,等. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学,2021,32(9):1308-1323.

Wang Yuman, Shen Junjun, Qiu Zhen, et al. Characteristics and environmental significance of concretion in the Lower Cambrian Qiongzhusi Formation in the Middle-Upper Yangtze area[J]. Natural Gas Geoscience, 2021, 32(9): 1308-1323.
[29] 尹福光,许效松,万方,等. 华南地区加里东期前陆盆地演化过程中的沉积响应[J]. 地球学报,2001,22(5):425-428.

Yin Fuguang, Xu Xiaosong, Wan Fang, et al. The sedimentary response to the evolutionary process of Caledonian foreland basin system in South China[J]. Acta Geoscientia Sinica, 2001, 22(5): 425-428.
[30] 罗超,王兰生,石学文,等. 长宁页岩气田宁211井五峰组—龙马溪组生物地层[J]. 地层学杂志,2017,41(2):142-152.

Luo Chao, Wang Lansheng, Shi Xuewen, et al. Biostratigraphy of the Wufeng to Longmaxi Formation at well Ning 211 of Changning shale gas field[J]. Journal of Stratigraphy, 2017, 41(2): 142-152.
[31] 周平,徐国盛,崔恒远,等. 沉积岩中总有机碳测定前的预处理方法[J]. 实验室研究与探索,2019,38(1):45-48.

Zhou Ping, Xu Guosheng, Cui Hengyuan, et al. Study on pretreatment method of total organic carbon before determination in sedimentary rock[J]. Research and Exploration in Laboratory, 2019, 38(1): 45-48.
[32] Lin J, Bao L M, Liu W, et al. Size distribution of sulfur species in fine and ultrafine aerosol particles using sulfur K-edge XANES[J]. Chinese Physics C, 2009, 33(11): 965-968.
[33] Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. Journal of Synchrotron Radiation, 2005, 12(4): 537-541.
[34] Manceau A, Nagy K L. Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy[J]. Geochimica et Cosmochimica Acta, 2012, 99: 206-223.
[35] Prietzel J, Botzaki A, Tyufekchieva N, et al. Sulfur speciation in soil by S K-edge XANES spectroscopy: Comparison of spectral deconvolution and linear combination fitting[J]. Environmental Science & Technology, 2011, 45(7): 2878-2886.
[36] Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater?[J]. Geology, 2004, 32(12): 1057-1060.
[37] Beauchemin S, Hesterberg D, Beauchemin M. Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids[J]. Soil Science Society of America Journal, 2002, 66(1): 83-91.
[38] Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97.
[39] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
[40] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391.
[41] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
[42] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
[43] Raiswell R, Buckley F, Berner R A, et al. Degree of pyritisation as a paleoenvironmental indicator of bottom water oxygenation[J]. Journal of Sedimentary Research, 1988, 58(5): 812-819.
[44] Lewan M D, Maynard J B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1982, 46(12): 2547-2560.
[45] Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 344-361.
[46] Little S H, Vance D, Lyons T W, et al. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings[J]. American Journal of Science, 2015, 315(2): 77-119.
[47] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.
[48] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
[49] Over D J, Hauf E, Wallace J, et al. Conodont biostratigraphy and magnetic susceptibility of Upper Devonian Chattanooga Shale, eastern United States: Evidence for episodic deposition and disconformities[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 137-149.
[50] Gregory D D, Large R R, Halpin J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1389-1410.