[1] |
Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475. |
[2] |
吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.
Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428. |
[3] |
Li M S, Hinnov L A, Huang C J, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9(1): 1004. |
[4] |
Huang C J, Hinnov L. Astronomically forced climate evolution in a saline lake record of the Middle Eocene to Oligocene, Jianghan Basin, China[J]. Earth and Planetary Science Letters, 2019, 528: 115846. |
[5] |
Huang H, Gao Y, Ma C, et al. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489. |
[6] |
Zhang Z F, Huang Y J, Li M S, et al. Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world[J]. Earth and Planetary Science Letters, 2022, 596: 117800. |
[7] |
Raymo M E, Nisancioglu K. The 41 kyr world: Milankovitch's other unsolved mystery[J]. Paleoceanography and Paleoclimatology, 2003, 18(1): 1011. |
[8] |
Bosmans J H C, Hilgen F J, Tuenter E, et al. Obliquity forcing of low-latitude climate[J]. Climate of the Past, 2015, 11(10): 1335-1346. |
[9] |
Wang M, Chen H H, Huang C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116. |
[10] |
Boulila S, Vahlenkamp M, de Vleeschouwer D, et al. Towards a robust and consistent Middle Eocene astronomical timescale[J]. Earth and Planetary Science Letters, 2018, 486: 94-107. |
[11] |
Charbonnier G, Boulila S, Spangenberg J E, et al. Obliquity pacing of the hydrological cycle during the oceanic anoxic event 2[J]. Earth and Planetary Science Letters, 2018, 499: 266-277. |
[12] |
Zhang R, Li X J, Xu Y, et al. The 173-kyr obliquity cycle pacing the Asian monsoon in the eastern Chinese Loess Plateau from Late Miocene to Pliocene[J]. Geophysical Research Letters, 2022, 49(2): e2021GL097008. |
[13] |
Gambacorta G, Menichetti E, Trincianti E, et al. Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian Stage (Early Silurian)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 152-162. |
[14] |
Fang J C, Wu H C, Fang Q, et al. Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109530. |
[15] |
Ma K Y, Hinnov L A, Zhang X S, et al. Astronomical time calibration of the Upper Devonian Lali section, South China[J]. Global and Planetary Change, 2020, 193: 103267. |
[16] |
Yao X, Hinnov L A. Advances in characterizing the cyclostratigraphy of binary chert-mudstone lithologic successions, Permian (Roadian-Lower Capitanian), Chaohu, Lower Yangtze, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 258-271. |
[17] |
Fang Q, Wu H C, Wang X L, et al. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics[J]. Journal of Asian Earth Sciences, 2018, 156: 302-315. |
[18] |
Fang Q, Wu H C, Wang X L, et al. An astronomically forced cooling event during the Middle Ordovician[J]. Global and Planetary Change, 2019, 173: 96-108. |
[19] |
Sørensen A L, Nielsen A T, Thibault N, et al. Astronomically forced climate change in the Late Cambrian[J]. Earth and Planetary Science Letters, 2020, 548: 116475. |
[20] |
Wu H C, Fang Q, Wang X D, et al. An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm[J]. Geology, 2018, 47(1): 83-86. |
[21] |
Zhang T, Li Y F, Fan T L, et al. Orbitally-paced climate change in the Early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters, 2022, 583: 117420. |
[22] |
Zhao Z F, Thibault N R, Dahl T W, et al. Synchronizing rock clocks in the Late Cambrian[J]. Nature Communications, 2022, 13(1): 1990. |
[23] |
马坤元,李若琛,龚一鸣. 秦皇岛石门寨亮甲山奥陶系剖面化学地层和旋回地层研究[J]. 地学前缘,2016,23(6):268-286.
Ma Kunyuan, Li Ruochen, Gong Yiming. Chemostratigraphy and cyclostratigraphy of the Ordovician Liangjiashan section from Shimenzhai of Qinhuangdao in North China[J]. Earth Science Frontiers, 2016, 23(6): 268-286. |
[24] |
Huang H, Gao Y, Jones M M, et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109735. |
[25] |
Zhong Y Y, Wu H C, Fan J X, et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109520. |
[26] |
Bian W H, Hornung J, Liu Z H, et al. Sedimentary and palaeo- environmental evolution of the Junggar Basin, Xinjiang, Northwest China[J]. Palaeobiodiversity and Palaeoenvironments, 2010, 90(3): 175-186. |
[27] |
Gao Y, Huang H, Tao H F, et al. Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 194: 104222. |
[28] |
Sun F N, Hu W X, Cao J, et al. Sustained and intensified lacustrine methane cycling during Early Permian climate warming[J]. Nature Communications, 2022, 13(1): 4856. |
[29] |
唐勇,侯章帅,王霞田,等. 准噶尔盆地石炭纪—二叠纪地层对比框架新进展[J]. 地质论评,2022,68(2):385-407.
Tang Yong, Hou Zhangshuai, Wang Xiatian, et al. Progress of the Carboniferous and Permian stratigraphic framework and correlation of the Junggar Basin, Xinjiang, Northwest China[J]. Geological Review, 2022, 68(2): 385-407. |
[30] |
Cao J, Xia L W, Wang T T, et al. An alkaline lake in the Late Paleozoic ice age (LPIA): A review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020, 202: 103091. |
[31] |
Hu T, Pang X Q, Wang Q F, et al. Geochemical and geological characteristics of Permian Lucaogou Formation shale of the well Ji174, Jimusar Sag, Junggar Basin, China: Implications for shale oil exploration[J]. Geological Journal, 2018, 53(5): 2371-2385. |
[32] |
邱振,姜琳,陶辉飞. 吉木萨尔凹陷二叠统芦草沟组地层与沉积环境特征研究[J]. 地质科学,2017,52(3):964-979.
Qiu Zhen, Jiang Lin, Tao Huifei. Characteristics of strata and depositional environment of the Permian Lucaogou Formation in Jimusar Sag[J]. Chinese Journal of Geology, 2017, 52(3): 964-979. |
[33] |
Liu D D, Zhang C, Yao E D, et al. What generated the Late Permian to Triassic unconformities in the southern Junggar Basin and western Turpan Basin; tectonic uplift, or increasing aridity?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 1-17. |
[34] |
Yang W, Feng Q, Liu Y Q, et al. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic fluvial-lacustrine deposits, southern Bogda Mountains, NW China: A terrestrial paleoclimatic record of mid-latitude NE Pangea[J]. Global and Planetary Change, 2010, 73(1/2): 15-113. |
[35] |
Wu H C, Zhang S H, Jiang G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323. |
[36] |
吴怀春,张世红,黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘,2008,15(4):159-169.
Wu Huaichun, Zhang Shihong, Huang Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China[J]. Earth Science Frontiers, 2008, 15(4): 159-169. |
[37] |
Liu W G, Liu Z H, An Z S, et al. Late Miocene episodic lakes in the arid Tarim Basin, western China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16292-16296. |
[38] |
Melles M, Brigham-Grette J, Minyuk P S, et al. 2.8 million years of arctic climate change from Lake El'gygytgyn, NE Russia[J]. Science, 2012, 337(6092): 315-320. |
[39] |
Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Chichester: John Wiley & Sons, 2014: 52-89. |
[40] |
Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. |
[41] |
Meyers S R. Astrochron: An R package for astrochronology[EB/OL]. [2021-10-05]. http://cran.r-project.org/package=astrochron. |
[42] |
Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. |
[43] |
Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the earth's history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566. |
[44] |
Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[45] |
Carroll A R, Wartes M A. Organic carbon burial by large Permian lakes, Northwest China[M]//Chan M A, Archer A W. Extreme depositional environments: Mega end members in geologic time. Boulder: Geological Society of America, 2003: 91-104. |
[46] |
Ma C, Li M S. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies[J]. Geoscience Frontiers, 2020, 11(4): 1345-1352. |
[47] |
Sageman B B, Singer B S, Meyers S R, et al. Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, western Interior Basin, USA[J]. GSA Bulletin, 2014, 126(7/8): 956-973. |
[48] |
Meyers S R, Siewert S E, Singer B S, et al. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, western interior basin, USA[J]. Geology, 2012, 40(1): 7-10. |
[49] |
Vieira L E A, Norton A, Dudok De Wit T, et al. How the inclination of earth's orbit affects incoming solar irradiance[J]. Geophysical Research Letters, 2012, 39(16): L16104. |
[50] |
de Vleeschouwer D, Rakociński M, Racki G, et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross mountains, Poland)[J]. Earth and Planetary Science Letters, 2013, 365: 25-37. |
[51] |
Rial J A, Pielke R A, Beniston M, et al. Nonlinearities, feedbacks and critical thresholds within the earth's climate system[J]. Climatic Change, 2004, 65(1/2): 11-38. |
[52] |
Huybers P. Early Pleistocene glacial cycles and the integrated summer insolation forcing[J]. Science, 2006, 313(5786): 508-511. |
[53] |
Scotese C R. An atlas of Phanerozoic Paleogeographic maps: The seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728. |