[1] An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research, 1991, 36(1): 29-36.
[2] Ding Z, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
[3] Ding Z L, Rutter N W, Sun J M, et al. Re-arrangement of atmospheric circulation at about 2.6Ma over northern China: Evidence from grain size records of loess-palaeosol and red clay sequences[J]. Quaternary Science Reviews, 2000, 19(6): 547-558.
[4] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
[5] Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 45-55.
[6] 陈洪云,孙有斌. 黄土高原风尘沉积的物质来源研究:回顾与展望[J]. 第四纪研究,2008,28(5):892-900.

Chen Hongyun, Sun Youbin. Study on provenance of eolian dust deposits on the Chinese Loess Plateau: Retrospects and prospects[J]. Quaternary Sciences, 2008, 28(5): 892-900.
[7] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985:31-48.

Liu Tunsheng. Loess and the environment[M]. Beijing: Science Press, 1985: 31-48.
[8] Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. Catena, 2004, 55(3): 325-340.
[9] Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203(3/4): 845-859.
[10] 陈骏,李高军. 亚洲风尘系统地球化学示踪研究[J]. 中国科学:地球科学,2011,41(9):1211-1232.

Chen Jun, Li Gaojun. Geochemical studies on the source region of Asian dust[J]. Science China: Earth Sciences, 2011, 41(9): 1211-1232.
[11] Sun Y B, Tada R, Chen J, et al. Tracing the provenance of fine‐grained dust deposited on the central Chinese Loess Plateau[J]. Geophysical Research Letters, 2008, 35(1): L01804.
[12] Li G J, Chen J, Ji J F, et al. Natural and anthropogenic sources of East Asian dust[J]. Geology, 2009, 37(8): 727-730.
[13] Stevens T, Palk C, Carter A, et al. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J]. GSA Bulletin, 2010, 122(7/8): 1331-1344.
[14] Xiao G Q, Zong K Q, Li G J, et al. Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J]. Geophysical Research Letters, 2012, 39(20): L20715.
[15] Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11): 1031-1034.
[16] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368.
[17] Bird A, Millar I, Rodenburg T, et al. A constant Chinese Loess Plateau dust source since the Late Miocene[J]. Quaternary Science Reviews, 2020, 227: 106042.
[18] Zhang H Z, Nie J S, Liu X J, et al. Spatially variable provenance of the Chinese Loess Plateau[J]. Geology, 2021, 49(10): 1155-1159.
[19] Bird A, Stevens T, Rittner M, et al. Quaternary dust source variation across the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 254-264.
[20] Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U‐Pb age patterns[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(11): 2085-2099.
[21] 马榕,张婉莹,何梦颖. 基于碎屑锆石U-Pb年龄对黄土高原黄土的空间物源差异分析[J]. 海洋地质前沿,2019,35(1):35-42.

Ma Rong, Zhang Wanying, He Mengying. Spatial provenance difference of the loess on Loess Plateau based on detrital zircon U-Pb age[J]. Marine Geology Frontiers, 2019, 35(1): 35-42.
[22] Rittner M, Vermeesch P, Carter A, et al. The provenance of Taklamakan desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137.
[23] Zhang H Z, Lu H Y, He J, et al. Large-number detrital zircon U-Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene[J]. Science Advances, 2022, 8(41): eabq2007.
[24] Yan Y, Ma L, Sun Y B. Tectonic and climatic controls on provenance changes of fine-grained dust on the Chinese Loess Plateau since the Late Oligocene[J]. Geochimica et Cosmochimica Acta, 2017, 200: 110-122.
[25] 王苗苗,弓虎军. 基于锆石U-Pb年龄的洛川黄土物源示踪[J]. 西北大学学报(自然科学版),2021,51(4):695-708.

Wang Miaomiao, Gong Hujun. Tracing the provenance of Luochuan loess based on zircon U-Pb ages[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(4): 695-708.
[26] Zhang H Z, Lu H Y, Stevens T, et al. Expansion of dust provenance and aridification of Asia since ~ 7.2 Ma revealed by detrital zircon U‐Pb dating[J]. Geophysical Research Letters, 2018, 45(24): 13437-13448.
[27] Gong H J, Xie W B, Wang J D, et al. Zircon U-Pb ages of Quaternary loess-paleosol sequences from the Luochuan section: Implication for sediment provenance[J]. Acta Geologica Sinica (English Edition), 2017, 91(1): 357-358.
[28] 杨光亮,范育新,蔡青松,等. 第四纪黄土物源的时空差异研究现状及展望[J]. 古地理学报,2021,23(5):1020-1037.

Yang Guangliang, Fan Yuxin, Cai Qingsong, et al. Progress and prospect of research on temporal and spatial differences of the Quaternary loess provenance[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(5): 1020-1037.
[29] Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D23): 28041-28047.
[30] 孙博亚,张云翔,弓虎军,等. 洛川黄土碎屑锆石的粒度特征及其古气候意义[J]. 西北大学学报(自然科学版),2011,41(1):119-126.

Sun Boya, Zhang Yunxiang, Gong Hujun, et al. The grain size of the detrital zircon of Luochuan and its paleoclimate implication[J]. Journal of Northwest University (Natural Science Edition), 2011, 41(1): 119-126.
[31] 李娇. 黄土高原西峰剖面末次间冰期以来石英光释光灵敏度变化研究[D]. 西安:西北大学,2020.

Li Jiao. The variation of quartz optically stimulated luminescence sensitivity in Xifeng section of Chinese Loess Plateau since the last interglacial[D]. Xi’an: Northwest University, 2020.
[32] Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1/2/3/4): 67-88.
[33] Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka[J]. Chemical Geology, 2001, 178(1/2/3/4): 71-94.
[34] 杨杰东,陈骏,张兆峰,等. 距今7 Ma以来甘肃灵台剖面Nd和Sr同位素特征[J]. 地球化学,2005,34(1):1-6.

Yang Jiedong, Chen Jun, Zhang Zhaofeng, et al. Variations in 143Nd/144Nd and 87Sr/86Sr of Lingtai profile over the past 7 Ma[J]. Geochimica, 2005, 34(1): 1-6.
[35] Jeong G Y, Hillier S, Kemp R A. Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau[J]. Quaternary Research, 2011, 75(1): 245-255.
[36] Fenn K, Stevens T, Bird A, et al. Insights into the provenance of the Chinese Loess Plateau from joint zircon U-Pb and garnet geochemical analysis of last glacial loess[J]. Quaternary Research, 2018, 89(3): 645-659.
[37] Nie J S, Peng W B. Automated SEM–EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau[J]. Aeolian Research, 2014, 13: 71-75.
[38] Che X D, Li G J. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J]. Quaternary Research, 2013, 80(3): 545-551.
[39] Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656): 159-162.
[40] 彭文彬. 利用黄土—红粘土重矿物组合和锆石U-Pb年代研究黄土高原物源及古气候变化[D]. 兰州:兰州大学,2017.

Peng Wenbin. Paleoclimate and provenance changes on the Chinese Loess Plateau based on heavy mineral and zircon U-Pb ages of loess and red clay[D]. Lanzhou: Lanzhou University, 2017.
[41] 郭佩,刘池洋,王建强,等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报,2017,35(1):46-56.

Guo Pei, Liu Chiyang, Wang Jianqiang, et al. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentologica Sinica, 2017, 35(1): 46-56.
[42] 谢静,杨石岭,丁仲礼. 黄土物源碎屑锆石示踪方法与应用[J]. 中国科学:地球科学,2012,42(6):923-933.

Xie Jing, Yang Shiling, Ding Zhongli. Methods and application of using detrital zircons to trace the provenance of loess[J]. Science China: Earth Sciences, 2012, 42(6): 923-933.
[43] Pell S D, Williams I S, Chivas A R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 1997, 109(3/4): 233-260.
[44] 丁仲礼,孙继敏,杨石岭,等. 灵台黄土—红粘土序列的磁性地层及粒度记录[J]. 第四纪研究,1998,18(1):86-92.

Ding Zhongli, Sun Jimin, Yang Shiling, et al. Magnetostratigraphy and grain size record of a thick red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Quaternary Sciences, 1998, 18(1): 86-92.
[45] 杨杰东,陈骏,刘连文,等. 2.5 Ma以来黄土高原灵台剖面黄土—古土壤87Sr/86Sr比值的变化[J]. 南京大学学报(自然科学),2003,39(6):731-738.

Yang Jiedong, Chen Jun, Liu Lianwen, et al. Variations in 87Sr/86Sr ratios of loess-paleosols of Lingtai section over the past 2.5 Ma[J]. Journal of Nanjing University (Natural Sciences), 2003, 39(6): 731-738.
[46] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
[47] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194.
[48] Vermeesch P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146.
[49] Vermeesch P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479-1493.
[50] 吴磊,胡晓燚. 第四纪柴达木盆地是黄土高原的主要物源区吗?[J]. 第四纪研究,2022,42(4):939-947.

Wu Lei, Hu Xiaoyi. Was the Qaidam Basin major source of the Chinese Loess Plateau in the Quaternary?[J]. Quaternary Sciences, 2022, 42(4): 939-947.
[51] Enkelmann E, Weislogel A, Ratschbacher L, et al. How was the Triassic Songpan‐Ganzi Basin filled? A provenance study[J]. Tectonics, 2007, 26(4): TC4007.
[52] 谢静,吴福元,丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报,2007,23(2):523-528.

Xie Jing, Wu Fuyuan, Ding Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J]. Acta Petrologica Sinica, 2007, 23(2): 523-528.
[53] Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980.
[54] 安芷生,王苏民,吴锡浩,等. 中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J]. 中国科学:地球科学,1998,28(6):481-490.

An Zhisheng, Wang Sumin, Wu Xihao, et al. Eolian evidence from the Chinese Loess Plateau: The onset of the Late Cenozoic Great Glaciation in the northern Hemisphere and Qinghai-Xizang Plateau uplift forcing[J]. Science China: Earth Sciences, 1998, 28(6): 481-490.
[55] 孙东怀,安芷生,苏瑞侠,等. 最近2.6 Ma中国北方季风环流与西风环流演变的风尘沉积记录[J]. 中国科学:地球科学,2003,33(6):497-504.

Sun Donghuai, An Zhisheng, Su Ruixia, et al. Eolian sedimentary records for the evolution of monsoon and westerly circulations of northern China in the last 2.6 Ma[J]. Science China: Earth Sciences, 2003, 33(6): 497-504.
[56] Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1/2): 33-48.
[57] Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
[58] Sun Y B, Yan Y, Nie J S, et al. Source-to-sink fluctuations of Asian Aeolian deposits since the Late Oligocene[J]. Earth-Science Reviews, 2020, 200: 102963.
[59] Chen J, Li G J. Geochemical studies on the source region of Asian dust[J]. Science China Earth Sciences, 2011, 54(9): 1279-1301.
[60] Li Y R, Shi W H, Aydin A, et al. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 2020, 201: 102947.
[61] 孙东怀,鹿化煜. 晚新生代黄土高原风尘序列的粒度和沉积速率与中国北方大气环流演变[J]. 第四纪研究,2007,27(2):251-262.

Sun Donghuai, Lu Huayu. Grain-size and dust accumulation rate of Late Cenozoic aeolian deposits and the inferred atmospheric circulation evolutions[J]. Quaternary Sciences, 2007, 27(2): 251-262.
[62] 孙有斌. 探寻中更新世气候转型之谜[J]. 地球环境学报,2019,10(2):210.

Sun Youbin. Explore the mystery of the mid-Pleistocene climate transition[J]. Journal of Earth Environment, 2019, 10(2): 210.
[63] 刘海娇,于学峰,孙有斌. 亚洲风尘:来自何方、飘向何处?[J]. 地球环境学报, 2020, 11(3): 335-342.

Liu Haijiao, Yu Xuefeng, Sun Youbin. Asian dust: Where does it come from and where does it drift?[J]. Journal of Earth Environment, 2020, 11(3): 335-342.
[64] An Z S. Late Cenozoic climate change in Asia: Loess, monsoon and monsoon-arid environment evolution[M]. Dordrecht: Springer, 2014.
[65] Lu H Y, Wang X Y, Wang Y, et al. Chinese loess and the Asian monsoon: What we know and what remains unknown[J]. Quaternary International, 2022, 620: 85-97.
[66] Liu T S, Ding Z L. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 111-145.