[1] Gerber T P, Pratson L F, Wolinsky M A, et al. Clinoform progradation by turbidity currents: Modeling and experiments[J]. Journal of Sedimentary Research, 2008, 78(3): 220-238.
[2] Puig P, Palanques A, Martín J. Contemporary sediment-transport processes in submarine canyons[J]. Annual Review of Marine Science, 2014, 6: 53-77.
[3] Mountjoy J J, Howarth J D, Orpin A R, et al. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins[J]. Science Advances, 2018, 4(3): eaar3748.
[4] 王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52-65.

Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
[5] Posamentier H W, Kolla V, 刘化清. 深水浊流沉积综述[J]. 沉积学报,2019,37(5):879-903.

Posamentier H W, Kolla V, Liu Huaqing. An overview of deep‑water turbidite deposition[J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903.
[6] 王海荣,王英民,邱燕,等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报,2008,26(1):39-45.

Wang Hairong, Wang Yingmin, Qiu Yan, et al. Development and its tectonic activity's origin of turbidity current sediment wave in manila trench, the South China sea[J]. Acta Sedimentologica Sinica, 2008, 26(1): 39-45.
[7] 黄璐,张家年,吴昊雨,等. 弯曲海底峡谷中浊流的三维流动及沉积的初步研究[J]. 沉积学报,2013,31(6):1001-1007.

Huang Lu, Zhang Jianian, Wu Haoyu, et al. Preliminary study of three-dimensional flow and deposition of turbidity currents in sinuous submarine canyons[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1001-1007.
[8] Cumberpatch Z A, Kane I A, Soutter E L, et al. Interactions between deep-water gravity flows and active salt tectonics[J]. Journal of Sedimentary Research, 2021, 91(1): 34-65.
[9] 侯云超,樊太亮,李一凡,等. 盐构造与深水重力流的相互作用及响应:以墨西哥湾Sureste盆地中新统为例[J]. 沉积学报,2022,40(1):22-33.

Hou Yunchao, Fan Tailiang, Li Yifan, et al. Interactions and responses between salt structures and deep water gravity flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33.
[10] Morley C K, King R, Hillis R, et al. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review[J]. Earth-Science Reviews, 2011, 104(1/2/3): 41-91.
[11] Ogawa K, Back S. Deepwater fold-thrust belt contraction driven by mixed deformation components[J]. Tectonophysics, 2022, 841: 229574.
[12] 崔敏. 深水褶皱冲断带的构造变形和油气地质特征[J]. 海洋地质前沿,2014,30(6):20-26.

Cui Min. Deformation in deepwater fold and thrust belts and its bearing on hydtocarbon accumulation[J]. Marine Geology Frontiers, 2014, 30(6): 20-26.
[13] Jolly B A, Whittaker A C, Lonergan L. Quantifying the geomorphic response of modern submarine channels to actively growing folds and thrusts, deep-water Niger Delta[J]. GSA Bulletin, 2017, 129(9/10): 1123-1139.
[14] Mitchell W H, Whittaker A C, Mayall M, et al. Quantifying the relationship between structural deformation and the morphology of submarine channels on the Niger Delta continental slope[J]. Basin Research, 2021, 33(1): 186-209.
[15] Clark I R, Cartwright J A. Key controls on submarine channel development in structurally active settings[J]. Marine and Petroleum Geology, 2011, 28(7): 1333-1349.
[16] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt tectonic controls on deep-water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola[J]. Basin Research, 2014, 26(4): 597-620.
[17] 赵家斌,钟广法. 构造活动对海底峡谷地貌形态的影响[J]. 海洋地质前沿,2018,34(12):1-13.

Zhao Jiabin, Zhong Guangfa. A review on geomorphic response of submarine canyons to tectonic deformation[J]. Marine Geology Frontiers, 2018, 34(12): 1-13.
[18] 葛智渊,许鸿翔. 浊流对复杂构造地貌的水动力和沉积响应[J]. 古地理学报,2023,25(5):1090-1117.

Ge Zhiyuan, Xu Hongxiang. Hydraulic and sedimentary responses of turbidity current to structurally-controlled topography[J]. Journal of Palaeogeography, 2023, 25(5): 1090-1117.
[19] Mayall M, Lonergan L, Bowman A, et al. The response of turbidite slope channels to growth-induced seabed topography[J]. AAPG Bulletin, 2010, 94(7): 1011-1030.
[20] Howlett D M, Ge Z Y, Nemec W, et al. Response of unconfined turbidity current to deep-water fold and thrust belt topography: Orthogonal incidence on solitary and segmented folds[J]. Sedimentology, 2019, 66(6): 2425-2454.
[21] Clark I R, Cartwright J A. Interactions between coeval sedimentation and deformation from the Niger delta deepwater fold belt[M]//Prather B E, Deptuck M E, Mohrig D, et al. Application of the principles of seismic geomorphology to continental slope and base-of-slope systems: Case studies from seafloor and near-sea floor analogues. Tulsa: SEPM Society for Sedimentary Geology, 2012.
[22] Soutter E L, Bell D, Cumberpatch Z A, et al. The influence of confining topography orientation on experimental turbidity currents and geological implications[J]. Frontiers in Earth Science, 2021, 8: 540633.
[23] 李磊,王英民,张莲美,等. 尼日尔三角洲下陆坡限定性重力流沉积过程及响应[J]. 中国科学:地球科学,2010,40(11):1591-1597.

Li Lei, Wang Yingmin, Zhang Lianmei, et al. Confined gravity flow sedimentary process and its impact on the Lower continental slope, Niger Delta[J]. Science China Earth Sciences, 2010, 40(11): 1591-1597.
[24] 高毅凡,李磊,程琳燕,等. 块体搬运沉积构型及其对后期浊流沉积的影响:以琼东南盆地陵水凹陷L区为例[J]. 海洋地质与第四纪地质,2022,42(2):101-109.

Gao Yifan, Li Lei, Cheng Linyan, et al. Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition:An example from the L area of Lingshui Sag in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 101-109.
[25] Abhari M N, Iranshahi M, Ghodsian M, et al. Experimental study of obstacle effect on sediment transport of turbidity currents[J]. Journal of Hydraulic Research, 2018, 56(5): 618-629.
[26] Pantin H M, Leeder M R. Reverse flow in turbidity currents: The role of internal solitons[J]. Sedimentology, 1987, 34(6): 1143-1155.
[27] Edwards D A, Leeder M R, Best J L, et al. On experimental reflected density currents and the interpretation of certain turbidites[J]. Sedimentology, 1994, 41(3): 437-461.
[28] 季雪瓜,陶丽云,黄河清. 突然释放型浊流在不同坡折渠道中的流动与沉积[J]. 沉积学报,2022,40(3):730-738.

Ji Xuegua, Tao Liyun, Huang Heqing. Numerical simulation of flow and deposition of sudden release turbidity on different slope breaks[J]. Acta Sedimentologica Sinica, 2022, 40(3): 730-738.
[29] Weimer P, Buffler R T. Structural geology and evolution of the Mississippi fan fold belt, deep gulf of Mexico[J]. AAPG Bulletin, 1992, 76(2): 225-251.
[30] Trudgill B D, Rowan M G, Fiduk J C, et al. The Perdido fold belt, northwestern deep gulf of Mexico, part 1: Structural geometry, evolution and regional implications[J]. AAPG Bulletin, 1999, 83(1): 1320-1336.
[31] Corredor F, Shaw J H, Bilotti F. Structural styles in the deep-water fold and thrust belts of the Niger Delta[J]. AAPG Bulletin, 2005, 89(6): 753-780.
[32] Netzeband G L, Hübscher C P, Gajewski D. The structural evolution of the Messinian evaporites in the Levantine Basin[J]. Marine Geology, 2006, 230(3/4): 249-273.
[33] De Vera J, Granado P, McClay K. Structural evolution of the Orange Basin gravity-driven system, offshore Namibia[J]. Marine and Petroleum Geology, 2010, 27(1): 223-237.
[34] Hesse S, Back S, Franke D. The structural evolution of folds in a deepwater fold and thrust belt: A case study from the Sabah continental margin offshore NW Borneo, SE Asia[J]. Marine and Petroleum Geology, 2010, 27(2): 442-454.
[35] King R C, Backé G. A balanced 2D structural model of the hammerhead delta-deepwater fold-thrust belt, bight Basin, Australia[J]. Australian Journal of Earth Sciences, 2010, 57(7): 1005-1012.
[36] Adam J, Ge Z Y, Sanchez M. Salt-structural styles and kinematic evolution of the Jequitinhonha deepwater fold belt, central Brazil passive margin[J]. Marine and Petroleum Geology, 2012, 37(1): 101-120.
[37] Durand-Riard P, Guzofski C, Caumon G, et al. Handling natural complexity in three-dimensional geomechanical restoration, with application to the recent evolution of the outer fold and thrust belt, deep-water Niger Delta[J]. AAPG Bulletin, 2013, 97(1): 87-102.
[38] Sellier N C, Loncke L, Vendeville B C, et al. Post-Messinian evolution of the Florence Ridge area (western Cyprus Arc), Part I: Morphostructural analysis[J]. Tectonophysics, 2013, 591: 131-142.
[39] Cruciani F, Barchi M R, Koyi H A, et al. Kinematic evolution of a regional-scale gravity-driven deepwater fold-and-thrust belt: The Lamu Basin case-history (East Africa)[J]. Tectonophysics, 2017, 712-713: 30-44.
[40] Yarbuh I, Contreras J. The interplay between deformation, erosion and sedimentation in the deep-water Mexican Ridges foldbelt, western Gulf of Mexico Basin[J]. Basin Research, 2017, 29(Suppl. 1): 446-464.
[41] Totake Y, Butler R W H, Bond C E, et al. Analyzing structural variations along strike in a deep-water thrust belt[J]. Journal of Structural Geology, 2018, 108: 213-229.
[42] Howlett D M, Gawthorpe R L, Ge Z Y, et al. Turbidites, topography and tectonics: Evolution of submarine channel-lobe systems in the salt-influenced Kwanza Basin, offshore Angola[J]. Basin Research, 2021, 33(2): 1076-1110.
[43] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[44] Talling P J, Paull C K, Piper D J W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125: 244-287.
[45] Ge Z Y, Nemec W, Gawthorpe R L, et al. Response of unconfined turbidity current to normal-fault topography[J]. Sedimentology, 2017, 64(4): 932-959.
[46] Vellinga A J, Cartigny M J B, Eggenhuisen J T, et al. Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model[J]. Sedimentology, 2018, 65(2): 540-560.
[47] Simpson R L. Two-dimensional turbulent separated flow[J]. AIAA Journal, 1987, 25(6): 775-776.
[48] Alexander J, Morris S. Observations on experimental, nonchannelized, high-concentration turbidity currents and variations in deposits around obstacles[J]. Journal of Sedimentary Research, 1994, 64(4a): 899-909.
[49] Lane-Serff G F, Beal L M, Hadfield T D. Gravity current flow over obstacles[J]. Journal of Fluid Mechanics, 1995, 292: 39-53.
[50] 杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报,2021,39(1):88-111.

Yang Tian, Cao Yingchang, Tian Jingchun. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.
[51] Vellinga A J. Froude supercritical geophysical flows: Their related bedforms and frontal structure [D]. Southampton: School of Ocean and Earth Science, University of Southampton, 2019: 25-101.
[52] Tinterri R, Magalhaes P M, Tagliaferri A, et al. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)[J]. Sedimentary Geology, 2016, 344: 382-407.
[53] Patacci M, Haughton P D W, Mccaffrey W D. Flow behavior of ponded turbidity currents[J]. Journal of Sedimentary Research, 2015, 85(8): 885-902.
[54] Jamali M. Non-hydrostatic layered flows over a sill[J]. Fluid Dynamics Research, 2013, 45(2): 025502.
[55] Lawrence G A. The hydraulics of steady two-layer flow over a fixed obstacle[J]. Journal of Fluid Mechanics, 1993, 254: 605-633.
[56] Kneller B, Buckee C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geolo-gical implications[J]. Sedimentology, 2000, 47(S1): 62-94.
[57] Durran D R. Mountain waves and downslope winds[M]//Banta R M, Berri G, Blumen W, et al. Atmospheric processes over complex terrain. Boston: American Meteorological Society, 1990: 59-83.
[58] 陈亮,季汉成,张靓,等. 裂陷盆地重力流沉积对基准面变化的响应:以乌里雅斯太南洼腾一下亚段为例[J]. 沉积学报,2016,34(3):487-496.

Chen Liang, Ji Hancheng, Zhang Liang, et al. Responses of gravity flow deposits to base-level variation in rift basin using a case study of Lower Teng1 Formation in south Wuliyasitai Sag[J]. Acta Sedimentologica Sinica, 2016, 34(3): 487-96.
[59] Cartigny M J B, Postma G, Van Den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56.
[60] Covault J A, Kostic S, Paull C K, et al. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20.
[61] 王大伟,孙悦,司少文,等. 海底周期阶坎研究进展与挑战[J]. 地球科学进展,2020,35(9):890-901.

Wang Dawei, Sun Yue, Si Shaowen, et al. Research progress and challenges of submarine cyclic steps[J]. Advances in Earth Science, 2020, 35(9): 890-901.
[62] 李爽,李伟,詹文欢. 南海东北部陆缘浊流活动的地貌记录及其形成机制分析[J]. 热带海洋学报,2021,40(1):111-121.

Li Shuang, Li Wei, Zhan Wenhuan. Geomorphological records of turbidity current activity in the northeastern margin of the South China Sea and analysis of triggering mechanism[J]. Journal of Tropical Oceanography, 2021, 40(1): 111-121.
[63] 钟广法. 超临界浊流之地貌动力学和沉积特征[J]. 沉积学报,2023,41(1):52-72.

Zhong Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica, 2023, 41(1): 52-72.
[64] 龚广传,李磊,何旺,等. 块体搬运沉积顶面沉积过程模拟:以南海北部坡为例[J]. 海洋地质前沿,2022,38(12):75-83.

Gong Guangchuan, Li Lei, He Wang, et al. Numerical simulation of post-mass transport deposition: A case study of the margin slope of South China Sea[J]. Marine Geology Frontiers, 2022, 38(12): 75-83.
[65] Sinclair H D, Tomasso M. Depositional evolution of confined turbidite basins[J]. Journal of Sedimentary Research, 2002, 72(4): 451-456.
[66] Lamb M P, Hickson T, Marr J G, et al. Surging versus continuous turbidity currents: Flow dynamics and deposits in an experimental intraslope minibasin[J]. Journal of Sedimentary Research, 2004, 74(1): 148-155.
[67] Violet J, Sheets B, Pratson L, et al. Experiment on turbidity currents and their deposits in a model 3D subsiding minibasin[J]. Journal of Sedimentary Research, 2005, 75(5): 820-843.
[68] Lamb M P, Toniolo H, Parker G. Trapping of sustained turbidity currents by intraslope minibasins[J]. Sedimentology, 2006, 53(1): 147-160.
[69] Toniolo H, Lamb M, Parker G. Depositional turbidity currents in diapiric minibasins on the continental slope: Formulation and theory[J]. Journal of Sedimentary Research, 2006, 76(5): 783-797.
[70] Wang X X, Luthi S M, Hodgson D M, et al. Turbidite stacking patterns in salt-controlled minibasins: Insights from integrated analogue models and numerical fluid flow simulations[J]. Sedimentology, 2017, 64(2): 530-552.
[71] Li L, Wang Y M, Zhang L M, et al. Confined gravity flow sedimentary process and its impact on the Lower continental slope, Niger Delta[J]. Science China Earth Sciences, 2010, 53(8): 1169-1175.
[72] Nyantakyi E K, Li T, Hu W S, et al. Structural and stratigraphic characteristics on distal parts of the outer fold and thrust belt of southern Niger Delta, Nigeria[J]. Arabian Journal of Geosciences, 2015, 8(9): 6677-6695.
[73] Morley C K. Growth of folds in a deep-water setting[J]. Geosphere, 2009, 5(2): 59-89.