[1] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352.
[2] Meredith W, Kelland S J, Jones D M. Influence of biodegradation on crude oil acidity and carboxylic acid composition[J]. Organic Geochemistry, 2000, 31(11): 1059-1073.
[3] Peters K E, Moldowan J M. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments[M]. Englewood Cliffs, NJ: Prentice Hall, 1993: 363.
[4] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow sub-basin of western Australia[J]. Organic Geochemistry, 1984, 6: 619-632.
[5] Wenger L M, Isaksen G H. Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments[J]. Organic Geochemistry, 2002, 33(12): 1277-1292.
[6] Larter S, Huang H P, Adams J, et al. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76.
[7] Chang X C, Shi B B, Liu Z Q, et al. Investigation on the biodegradation levels of super heavy oils by parameter-striping method and refined Manco scale: A case study from the Chepaizi uplift of Junggar Basin[J]. Petroleum Science, 2021, 18(2): 380-397.
[8] 胡秋媛,董大伟,赵利,等. 准噶尔盆地车排子凸起构造演化特征及其成因[J]. 石油与天然气地质,2016,37(4):556-564.

Hu Qiuyuan, Dong Dawei, Zhao Li, et al. Tectonic evolutionary characteristics and their causes of Chepaizi uplift in Junggar Basin[J]. Oil & Gas Geology, 2016, 37(4): 556-564.
[9] Chang X C, Wang Y, Shi B B, et al. Charging of Carboniferous volcanic reservoirs in the eastern Chepaizi uplift, Junggar Basin (northwestern China) constrained by oil geochemistry and fluid inclusion[J]. AAPG Bulletin, 2019, 103(7): 1625-1652.
[10] Shi B B, Chang X C, Xu Y D, et al. Charging history and fluid evolution for the Carboniferous volcanic reservoirs in the western Chepaizi uplift of Junggar Basin as determined by fluid inclusions and basin modelling[J]. Geological Journal, 2020, 55(4): 2591-2614.
[11] Xu Y D, Chang X C, Shi B B, et al. Geochemistry of severely biodegraded oils in the Carboniferous volcanic reservoir of the Chepaizi uplift, Junggar Basin, NW China[J]. Energy Exploration & Exploitation, 2018, 36(6): 1461-1481.
[12] 李阳. 准噶尔盆地车排子凸起东翼石炭系稠油地球化学与稠化机理研究[D]. 青岛:山东科技大学,2018.

Li Yang. Geochemistry and genetic mechanism of heavy oil in the eastern Chepaizi uplift, Junggar Basin[D]. Qingdao: Shandong University of Science and Technology, 2018.
[13] 张枝焕,向奎,秦黎明,等. 准噶尔盆地四棵树凹陷烃源岩地球化学特征及其对车排子凸起油气聚集的贡献[J]. 中国地质,2012,39(2):326-337.

Zhang Zhihuan, Xiang Kui, Qin Liming, et al. Geochemical characteristics of source rocks and their contribution to petroleum accumulation of Chepaizi area in Sikeshu Depression, Junggar Basin[J]. Geology in China, 2012, 39(2): 326-337.
[14] Shi B B, Chang X C, Xu Y D, et al. Origin and migration pathway of biodegraded oils pooled in multiple-reservoirs of the Chepaizi uplift, Junggar Basin, NW China: Insights from geochemical characterization and chemometrics methodst[J]. Marine and Petroleum Geology, 2020, 122: 104655.
[15] 沈扬,贾东,宋国奇,等. 源外地区油气成藏特征、主控因素及地质评价:以准噶尔盆地西缘车排子凸起春光油田为例[J]. 地质论评,2010,56(1):51-59.

Shen Yang, Jia Dong, Song Guoqi, et al. Reservoir-forming characters, key control factors and geological evaluation in the area outside oil source: Take the Chunguang oilfield in Chepaizi uplift in western Junggar Basin as an example[J]. Geological Review, 2010, 56(1): 51-59.
[16] 牛靖靖. 准西车排子地区中生界油气成藏主控因素分析[D]. 青岛:中国石油大学(华东),2015.

Niu Jingjing. Analysis on main controling factors of Mesozoic hydrocarbon accumulation in Chepaizi area of west Junggar Basin[D]. Qingdao: China University of Petroleum (East China), 2015.
[17] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. New York: Cambridge University Press, 2005: 222-223.
[18] Wang G L, Wang T G, Simoneit B R T, et al. Investigation of hydrocarbon biodegradation from a downhole profile in Bohai Bay Basin: Implications for the origin of 25-norhopanes[J]. Organic Geochemistry, 2013, 55: 72-84.
[19] Chang X C, Wang G L, Guo H H, et al. A case study of crude oil alteration in a clastic reservoir by waterflooding[J]. Journal of Petroleum Science and Engineering, 2016, 146: 380-391.
[20] Larter S, Wilhelms A, Head I, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part 1: Biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34(4): 601-613.
[21] López L, Mónaco S L, Volkman J K. Evidence for mixed and biodegraded crude oils in the Socororo field, eastern Venezuela Basin[J]. Organic Geochemistry, 2015, 82: 12-21.
[22] 常象春,孙婷婷,王悦,等. 水驱原油组分蚀变的地球化学响应及控制因素[J]. 地球科学与环境学报,2017,39(6):807-825.

Chang Xiangchun, Sun Tingting, Wang Yue, et al. Geochemical alteration of waterflooded oils and the controlling factors[J]. Journal of Earth Sciences and Environment, 2017, 39(6): 807-825.
[23] López L. Study of the biodegradation levels of oils from the Orinoco Oil Belt (Junin area) using different biodegradation scales[J]. Organic Geochemistry, 2014, 66: 60-69.