[1] 汪正江,陈洪德,张锦泉. 物源分析的研究与展望[J]. 沉积与特提斯地质,2000,20(4):104-110.

Wang Zhengjiang, Chen Hongde, Zhang Jinquan. Provenance analysis: Perspectives[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(4): 104-110.
[2] 赵红格,刘池洋. 物源分析方法及研究进展[J]. 沉积学报,2003,21(3):409-415.

Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.
[3] Jan Weltje G, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/2/3/4): 1-11.
[4] 徐田武,宋海强,况昊,等. 物源分析方法的综合运用:以苏北盆地高邮凹陷泰一段地层为例[J]. 地球学报,2009,30(1):111-118.

Xu Tianwu, Song Haiqiang, Kuang Hao, et al. Synthetic application of the provenance analysis technique: A case study of member 1 of Taizhou Formation in Gaoyou Sag, Subei Basin[J]. Acta Geoscientica Sinica, 2009, 30(1): 111-118.
[5] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.
[6] 杨仁超,李进步,樊爱萍,等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报,2013,31(1):99-107.

Yang Renchao, Li Jinbu, Fan Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107.
[7] 徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396.

Xu Jie, Jiang Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396.
[8] Andò S, Garzanti E. Raman spectroscopy in heavy-mineral studies[J]. Geological Society, London, Special Publications, 2014, 386(1): 395-412.
[9] Moral Cardona J P, Gutiérrez Mas J M, Sánchez Bellón A, et al. Surface textures of heavy-mineral grains: A new contribution to provenance studies[J]. Sedimentary Geology, 2005, 174(3/4): 223-235.
[10] Gärtner A, Linnemann U, Sagawe A, et al. Morphology of zircon crystal grains in sediments-characteristics, classifications, definitions[J]. Geologica Saxonica, 2013, 59: 65-73.
[11] Zoleikhaei Y, Frei D, Morton A, et al. Roundness of heavy minerals (zircon and apatite) as a provenance tool for unraveling recycling: A case study from the Sefidrud and Sarbaz rivers in N and SE Iran[J]. Sedimentary Geology, 2016, 342: 106-117.
[12] 宋鹰,钱禛钰,张俊霞,等. 碎屑锆石形态学分类体系及其在物源分析中的应用:以松辽盆地松科一井为例[J]. 地球科学,2018,43(6):1997-2006.

Song Ying, Qian Zhenyu, Zhang Junxia, et al. Morphology of detrital zircon and its application in provenance analysis: Example from Cretaceous Continental Scientific Drilling borehole in Songliao Basin[J]. Earth Science, 2018, 43(6): 1997-2006.
[13] Yue W, Yue X Y, Zhang L M, et al. Morphology of detrital zircon as a fingerprint to trace sediment provenance: Case study of the Yangtze Delta[J]. Minerals, 2019, 9(7): 438.
[14] Rahl J M, Reiners P W, Campbell I H, et al. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah[J]. Geology, 2003, 31(9): 761-764.
[15] Reiners P W. Zircon (U-Th)/He thermochronometry[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 151-179.
[16] Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. New Jersey: Blackwell Publishing, 2011: 47-62.
[17] Hinton R W, Upton B G J. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3287-3302.
[18] Kinny P D, Compston W, Williams I S. A reconnaissance ion-probe study of hafnium isotopes in zircons[J]. Geochimica et Cosmochimica Acta, 1991, 55(3): 849-859.
[19] Valley J W. Oxygen isotopes in zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 343-385.
[20] Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 2006, 439(7076): 580-583.
[21] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘,2010,17(1):267-286.

Zhao Zhenhua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers, 2010, 17(1): 267-286.
[22] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
[23] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
[24] 曾楷,李飞,龚峤林,等. 寒武系第二统仙女洞组混合沉积特征及古环境意义:以川北旺苍唐家河剖面为例[J]. 沉积学报,2020,38(1):166-181.

Zeng Kai, Li Fei, Gong Qiaolin, et al. Characteristics and paleoenvironmental significance of mixed siliciclastic-carbonate sedimentation in the Xiannüdong Formation, Cambrian (Series 2): A case study from the Tangjiahe section, Wangcang, northern Sichuan[J]. Acta Sedimentologica Sinica, 2020, 38(1): 166-181.
[25] Gallagher S J, Holdgate G. The palaeogeographic and palaeoenvironmental evolution of a Palaeogene mixed carbonate-siliciclastic cool-water succession in the Otway Basin, Southeast Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 156(1/2): 19-50.
[26] Schwarz E, Veiga G D, Álvarez Trentini G, et al. Expanding the spectrum of shallow-marine, mixed carbonate-siliciclastic systems: Processes, facies distribution and depositional controls of a siliciclastic-dominated example[J]. Sedimentology, 2018, 65(5): 1558-1589.
[27] Bádenas B, Aurell M, Gasca J M. Facies model of a mixed clastic-carbonate, wave-dominated open-coast tidal flat (Tithonian-Berriasian, North-East Spain)[J]. Sedimentology, 2018, 65(5): 1631-1666.
[28] 于冬冬,张永生,邢恩袁,等. 柴西南翼山构造上新统狮子沟组混积岩地球化学特征及物源指示意义[J]. 地学前缘,2018,25(4):65-75.

Yu Dongdong, Zhang Yongsheng, Xing Enyuan, et al. Geochemical characteristics and implication for provenance of mixed rocks from the Pliocene Shizigou Formation in the Nanyishan structure of the western Qaidam Basin[J]. Earth Science Frontiers, 2018, 25(4): 65-75.
[29] 李艳,李安春,黄朋. 大连湾近海表层沉积物重矿物组合分布特征及其物源环境指示[J]. 海洋地质与第四纪地质,2011,31(6):13-20.

Li Yan, Li Anchun, Huang Peng. Distribution of heavy mineral assemblages in subsurface sediments of Dalian Bay and their implications for provenance and environment[J]. Marine Geology & Quaternary Geology, 2011, 31(6): 13-20.
[30] 宁泽,韩宗珠,林学辉,等. 山东半岛南部近岸海域碎屑矿物对中小河流的物源响应[J]. 海洋地质前沿,2019,35(4):57-68.

Ning Ze, Han Zongzhu, Lin Xuehui, et al. Provenance response of detrital minerals from medium and small rivers in offshore southern Shandong Peninsula[J]. Marine Geology Frontiers, 2019, 35(4): 57-68.
[31] 刘忠诚,金秉福,王金城,等. 辽东湾滨岸带矿物组合分区及其意义[J]. 海洋通报,2014,33(3):268-276.

Liu Zhongcheng, Jin Bingfu, Wang Jincheng, et al. Provinces of the detrital mineral and their significances on the coastal zone of the Liaodong Bay[J]. Marine Science Bulletin, 2014, 33(3): 268-276.
[32] Kudrass H R. Sedimentary models to estimate the heavy-mineral potential of shelf sediments[M]//Teleki P G, Dobson M R, Moore J R, von Stackelberg U. Marine minerals: Advances in research and resource assessment. Netherlands, Dordrecht: Springer, 1987: 39-56.
[33] Larcombe P, Carter R M. Cyclone pumping, sediment partitioning and the development of the Great Barrier Reef shelf system: A review[J]. Quaternary Science Reviews, 2004, 23(1/2): 107-135.
[34] Komar P D. The entrainment, transport and sorting of heavy minerals by waves and currents[J]. Developments in Sedimentology, 2007, 58: 3-48.
[35] Cascalho J, Fradique C. The sources and hydraulic sorting of heavy minerals on the northern Portuguese continental margin[J]. Developments in Sedimentology, 2007, 58: 75-110.
[36] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 333-361.
[37] Critelli S, Muto F, Perri F, et al. Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: Stratigraphic record of the Miocene tectonic evolution[J]. Marine and Petroleum Geology, 2017, 87: 47-59.
[38] Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.
[39] Pye K. Properties of sediment particles[M]//Pye K. Sediment transport and depositional processes. Oxford: Blackwell, 1994: 1-24.
[40] Komar P D. Placer deposits[M]//Schwartz M L. Encyclopedia of coastal science. Dordrecht: Springer, 2005: 771-772.
[41] Trenhaile A S. Beach sediment characteristics[M]//Schwartz M L. Encyclopedia of coastal science. Dordrecht: Springer, 2005: 177-179.
[42] Andò S, Garzanti E, Padoan M, et al. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis[J]. Sedimentary Geology, 2012, 280: 165-178.
[43] Garzanti E, Andò S, Limonta M, et al. Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions[J]. Earth-Science Reviews, 2018, 185: 122-139.
[44] Morton A C, Hallsworth C. Stability of detrital heavy minerals during burial diagenesis[J]. Developments in Sedimentology, 2007, 58: 215-245.
[45] Garzanti E, Ando S. Heavy mineral concentration in modern sands: Implications for provenance interpretation[J]. Developments in Sedimentology, 2007, 58: 517-545.
[46] Gram R. A Florida Sabellariidae reef and its effect on sediment distribution[J]. Journal of Sedimentary Petrology, 1968, 38(3): 863-868.
[47] 刘宝珺,许效松. 中国南方岩相古地理图集[M]. 北京:科学出版社,1994:1-238.

Liu Baojun, Xu Xiaosong. Atlas of the lithofacies and paleogeography of the South China[M]. Beijing: Science Press, 1994: 1-238.
[48] 李晋僧. 秦岭显生宙古海盆沉积和演化史[M]. 北京:地质出版社,1994:1-216.

Li Jinseng. The sedimentary and evolutionary history of the Phanerozoic ancient marine basin in Qinling Mountains[M]. Beijing: Geological Press, 1994: 1-216.
[49] 余宽宏,金振奎,苏奎,等. 中、上扬子地台北缘寒武纪沉积特征及油气勘探意义[J]. 中国科学(D辑):地球科学,2013,43(9):1418-1435.

Yu Kuanhong, Jin Zhenkui, Su Kui, et al. The Cambrian sedimentary characteristics and their implications for oil and gas exploration in north margin of Middle-Upper Yangtze Plate[J]. Science China (Seri. D): Earth Sciences, 2013, 43(9): 1418-1435.
[50] 李皎,何登发. 四川盆地及邻区寒武纪古地理与构造—沉积环境演化[J]. 古地理学报,2014,16(4):441-460.

Li Jiao, He Dengfa. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 2014, 16(4): 441-460.
[51] 张英利,贾晓彤,王宗起,等. 米仓山地区早寒武世仙女洞组沉积物源新认识:沉积学、重矿物和碎屑锆石年代学的证据[J]. 地质学报,2018,92(9):1918-1935.

Zhang Yingli, Jia Xiaotong, Wang Zongqi, et al. New insights into provenance of Early Cambrian Xiannüdong Formation in the Micangshan area: Evidence from sedimentology, heavy mineral and detrital zircon chronology[J]. Acta Geologica Sinica, 2018, 92(9): 1918-1935.
[52] 张英利,贾晓彤,王宗起,等. 米仓山地区早寒武世仙女洞组古地理和沉积物源分析[J]. 地质学报,2019,93(11):2904-2920.

Zhang Yingli, Jia Xiaotong, Wang Zongqi, et al. Palaeogeography and provenance analysis of Early Cambrian Xiannüdong Formation in the Micangshan area[J]. Acta Geologica Sinica, 2019, 93(11): 2904-2920.
[53] 魏显贵,杜思清,何政伟,等. 米仓山地区构造演化[J]. 矿物岩石,1997,17(增刊1):107-113.

Wei Xiangui, Du Siqing, He Zhengwei, et al. The tectonic evolution of Micangshan area[J]. Journal of Mineralogy and Petrology, 1997, 17(Suppl.1): 107-113.
[54] 刘登忠,魏显贵,杜思清,等. 米仓山西段地质研究新进展[J]. 矿物岩石,1997,17(增刊1):4-11.

Liu Dengzhong, Wei Xiangui, Du Siqing, et al. Advance of geologic study in western of Micangshan area[J]. Journal of Mineralogy and Petrology, 1997, 17(Suppl.1): 4-11.
[55] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版),2013,40(5):511-520.

Liu Shugen, Sun Wei, Luo Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520.
[56] 谷志东,殷积峰,姜华,等. 四川盆地宣汉—开江古隆起的发现及意义[J]. 石油勘探与开发,2016,43(6):893-904.

Gu Zhidong, Yin Jifeng, Jiang Hua, et al. Discovery of Xuanhan-Kaijiang Paleouplift and its significance in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(6): 893-904.
[57] 李智武,冉波,肖斌,等. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义[J]. 地学前缘,2019,26(1):59-85.

Li Zhiwu, Ran Bo, Xiao Bin, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85.
[58] 张满郎,谢增业,李熙喆,等. 四川盆地寒武纪岩相古地理特征[J]. 沉积学报,2010,28(1):128-139.

Zhang Manlang, Xie Zengye, Li Xizhe, et al. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(1): 128-139.
[59] 牟传龙,梁薇,周恳恳,等. 中上扬子地区早寒武世(纽芬兰世—第二世)岩相古地理[J]. 沉积与特提斯地质,2012,32(3):41-53.

Mou Chuanlong, Liang Wei, Zhou Kenken, et al. Sedimentary facies and palaeogeography of the Middle-Upper Yangtze area during the Early Cambrian (Terreneuvian-Series 2)[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(3): 41-53.
[60] 龚峤林,李飞,苏成鹏,等. 细粒浊积岩特征、分布及发育机制:以川北唐家河剖面寒武系郭家坝组为例[J]. 古地理学报,2018,20(3):349-364.

Gong Qiaolin, Li Fei, Su Chengpeng, et al. Characteristics, distribution and mechanisms of fine-grained turbidite: A case study from the Cambrian Guojiaba Formation in Tangjiahe Section, northern Sichuan Basin[J]. Journal of Palaeogeography, 2018, 20(3): 349-364.
[61] 张廷山,兰光志,沈昭国,等. 大巴山、米仓山南缘早寒武世礁滩发育特征[J]. 天然气地球科学,2005,16(6):710-714.

Zhang Tingshan, Lan Guangzhi, Shen Zhaoguo, et al. Early Cambrian reefs and banks development in southern margin of Daba Mt. and Micang Mt.[J]. Natural Gas Geoscience, 2005, 16(6): 710-714.
[62] Tang H, Kershaw S, Tan X C, et al. Sedimentology of reefal buildups of the Xiannüdong Formation (Cambrian Series 2), SW China[J]. Journal of Palaeogeography, 2019, 8(1): 11.
[63] 赵兵,杜思清,徐新煌. 米仓山南缘寒武纪岩石地层及层序地层[J]. 矿物岩石,1997,17(增刊1):21-31.

Zhao Bing, Du Siqing, Xu Xinhuang. The lithostratigraphy and sequence stratigraphy of Cambrian in the south of Micangshan area[J]. Journal of Mineralogy and Petrology, 1997, 17(Suppl.1): 21-31.
[64] 冯增昭,彭勇民,金振奎,等. 中国南方寒武纪和奥陶纪岩相古地理[M]. 北京:地质出版社,2001.

Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies paleogeography of the Cambrian and Ordovician in South China[M]. Beijing: Geological Publishing House, 2001.
[65] 汪啸风,陈孝红. 中国各地质时代地层划分与对比[M]. 北京:地质出版社,2005:67-100.

Wang Xiaofeng, Chen Xiaohong. Stratigraphic division and correlation of each geologic period in China[M]. Beijing: Geological Publishing House, 2005: 67-100.
[66] 范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,http://doi.org/10.14027/j.issn.1000-0550.2020.041. doi:  10.14027/j.issn.1000-0550.2020.041

Fan Haijing, Deng Hucheng,Fu Meiyan,et al.Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J].Acta Sedimentologica Sinica, http://doi.org/10.14027/j.issn.1000-0550.2020.041. doi:  10.14027/j.issn.1000-0550.2020.041
[67] 刘善品,何况,吴小斌,等. 细粒沉积物(岩)中重矿物提取方法的改进[J]. 地质科技情报,2012,31(1):131-136.

Liu Shanpin, He Kuang, Wu Xiaobin, et al. Improving the methods of heavy minerals pretreatment and minerals separation in mudstone and siltstone[J]. Geological Science and Technology Information, 2012, 31(1): 131-136.
[68] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500.
[69] Garzanti E, Resentini A, Andò S, et al. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola)[J]. Sedimentology, 2015, 62(4): 971-996.
[70] Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps): An ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996, 122(4): 337-358.
[71] Turner G, Morton A C. The effects of burial diagenesis on detrital heavy mineral grain surface textures[J]. Developments in Sedimentology, 2007, 58: 393-412.
[72] Velbel M A. Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: Examples from pyroxenes and amphiboles[J]. Developments in Sedimentology, 2007, 58: 113-150.
[73] Velbel M A, Losiak A I. Denticles on chain silicate grain surfaces and their utility as indicators of weathering conditions on Earth and Mars[J]. Journal of Sedimentary Research, 2010, 80 (9): 771-780.
[74] Flemming B. Beach sand and its origins[M]//Jackson D W T, Short A D. Sandy Beach Morphodynamics. Elsevier, 2020: 15-37.http://doi.org/10.1016/13978-0-08-102927-5.00002-3.
[75] Deer W A, Howie R A, Zussman J. An introduction to the rock-forming minerals[M]. London: Longman Press, 1966.
[76] Flint A L, Flint L E. 2.2 Particle density[M]//Dane J H, Topp G C. Methods of soil analysis. Madison: Soil Science Society of America, 2002: 229-240.]
[77] 王文之,范毅,赖强,等. 四川盆地下寒武统沧浪铺组白云岩分布新认识及其油气地质意义[J]. 天然气勘探与开发,2018,41(1):1-7.

Wang Wenzhi, Fan Yi, Lai Qiang, et al. A new understanding of dolomite distribution in the Lower Cambrian Canglangpu Formation of Sichuan Basin: Implication for petroleum geology[J]. Natural Gas Exploration and Development, 2018, 41(1): 1-7.
[78] 彭军,褚江天,陈友莲,等. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏,2020,32(4):12-22.

Peng Jun, Chu Jiangtian, Chen Youlian, et al. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Lithologic Reservoirs, 2020, 32(4): 12-22.
[79] 张晓东,翟世奎,许淑梅. 长江口外近海表层沉积物粒度的级配特性及其意义[J]. 中国海洋大学学报,2007,37(2):328-334.

Zhang Xiaodong, Zhai Shikui, Xu Shumei. The grain size fractions distribution characteristics and their significance of the surface sediments on the adjacent sea area off the Changjiang Estuary[J]. Periodical of Ocean University of China, 2007, 37(2): 328-334.
[80] 杨亚迪,郑建国,岳帅,等. 海滩沙在波浪作用下的垂向分异试验研究[J]. 中国海洋大学学报,2018,48(增刊1):123-130.

Yang Yadi, Zheng Jianguo, Yue Shuai, et al. Experimental study on vertical differentiation of beach sand under wave action[J]. Periodical of Ocean University of China, 2018, 48(Suppl.1): 123-130.
[81] Orpin A R, Brunskill G J, Zagorskis I, et al. Patterns of mixed siliciclastic–carbonate sedimentation adjacent to a large dry-tropics river on the central Great Barrier Reef shelf, Australia[J]. Australian Journal of Earth Sciences, 2004, 51(5): 665-683.
[82] 袁克兴,朱茂炎,张俊明,等. 陕西南郑福成剖面早寒武世古杯生物地层学:对古杯演化和地层对比的初步探讨[J]. 古生物学报,2001,40(增刊1):115-129.

Yuan Kexing, Zhu Maoyan, Zhang Junming, et al. Biostratigraphy of archaeocyathan horizons in the Lower Cambrian Fucheng Section, South Shaanxi province: Implications for regional correlations and archaeocyathan evolution[J]. Acta Palaeontologica Sinica, 2001, 40(Suppl.1): 115-129.
[83] Hicks M, Rowland S M. Early Cambrian microbial reefs, archaeocyathan inter-reef communities, and associated facies of the Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1/2): 137-153.
[84] 沈骋,谭秀成,周博,等. 川北旺苍唐家河剖面仙女洞组灰泥丘沉积特征及造丘环境分析[J]. 地质论评,2016,62(1):202-214.

Shen Cheng, Tan Xiucheng, Zhou Bo, et al. Construction of mud mounds and their forming models of Xiannüdong Formation in Tangjiahe Section of Wangcang, North Sichuan[J]. Geological Review, 2016, 62(1): 202-214.
[85] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.