[1] |
Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin[J]. Marine Geology, 2006, 226(1/2): 25-40. |
[2] |
Gay A, Lopez M, Cochonat P, et al. Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the Lower slope of the Congo Basin, West African margin[M]//van Rensbergen P, Hillis R R, Maltman A J, et al. Subsurface sediment mobilization. London: Geological Society, 2003: 173-189. |
[3] |
King L H, MacLean B. Pockmarks on the scotian shelf[J]. GSA Bulletin, 1970, 81(10): 3141-3148. |
[4] |
Hovland M, Talbot M R, Qvale H, et al. Methane-related carbonate cements in pockmarks of the North Sea[J]. Journal of Sedimentary Research, 1987, 57(5): 881-892. |
[5] |
Sahling H, Bohrmann G, Spiess V, et al. Pockmarks in the northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow[J]. Marine Geology, 2008, 249(3/4): 206-225. |
[6] |
Hovland M, Gardner J V, Judd A G. The significance of pockmarks to understanding fluid flow processes and geohazards[J]. Geofluids, 2002, 2(2): 127-136. |
[7] |
Brothers L L, Kelley J T, Belknap D F, et al. Shallow stratigraphic control on pockmark distribution in north temperate estuaries[J]. Marine Geology, 2012, 329-331: 34-45. |
[8] |
邸鹏飞,黄华谷,黄保家,等. 莺歌海盆地海底麻坑的形成与泥底辟发育和流体活动的关系[J]. 热带海洋学报,2012,31(5):26-36.
Di Pengfei, Huang Huagu, Huang Baojia, et al. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5): 26-36. |
[9] |
Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1/2/3/4): 15-32. |
[10] |
Jobe Z R, Lowe D R, Uchytil S J. Two fundamentally different types of submarine canyons along the continental margin of equatorial Guinea[J]. Marine and Petroleum Geology, 2011, 28(3): 843-860. |
[11] |
Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids, 2002, 2(2): 109-126. |
[12] |
Sun Q L, Wu S G, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156. |
[13] |
Gay A, Lopez M, Cochonat P, et al. Evidences of early to late fluid migration from an Upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin[J]. Marine and Petroleum Geology, 2006, 23(3): 387-399. |
[14] |
Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a giant pockmark of the Lower Congo Basin[J]. Marine Geology, 2006, 226(1/2): 81-95. |
[15] |
Paull C K, Ussler III W, Borowski W S, et al. Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates[J]. Geology, 1995, 23(1): 89-92. |
[16] |
Hovland M, Heggland R, de Vries M H, et al. Unit-pockmarks and their potential significance for predicting fluid flow[J]. Marine and Petroleum Geology, 2010, 27(6): 1190-1199. |
[17] |
Cathles L M, Su Z, Chen D F. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration[J]. Marine and Petroleum Geology, 2010, 27(1): 82-91. |
[18] |
Hammer Ø, Webb K E, Depreiter D. Numerical simulation of upwelling currents in pockmarks, and data from the inner Oslofjord, Norway[J]. Geo-Marine Letters, 2009, 29(4): 269-275. |
[19] |
Shanmugam G. 深水砂体成因研究新进展[J]. 石油勘探与开发,2013,40(3):294-301.
Shanmugam G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 294-301. |
[20] |
李磊,裴都,都鹏燕,等. 海底麻坑的构型、特征、演化及成因:以西非木尼河盆地陆坡为例[J]. 海相油气地质,2013,18(4):53-58.
Li Lei, Pei Du, Du Pengyan, et al. Architecture, character, evolution and genesis of seabed pockmarks: A case study to the continental slope in Rio Muni Basin, West Africa[J]. Marine Origin Petroleum Geology, 2013, 18(4): 53-58. |
[21] |
杨志鹏,李磊,张威,等. 海底麻坑表征及成因研究:以尼日尔三角洲为例[J]. 海洋地质与第四纪地质,2020,40(6):61-70.
Yang Zhipeng, Li Lei, Zhang Wei, et al. Characteristics and genesis of submarine pockmarks: A case from the Niger Delta[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 61-70. |
[22] |
孙启良,吴时国,陈端新,等. 南海北部深水盆地流体活动系统及其成藏意义[J]. 地球物理学报,2014,57(12):4052-4062.
Sun Qiliang, Wu Shiguo, Chen Duanxin, et al. Focused fluid flow systems and their implications for hydrocarbon and gas hydrate accumulations in the deep-water basins of the northern South China Sea[J]. Chinese Journal of Geophysics, 2014, 57(12): 4052-4062. |
[23] |
徐志诚,吕福亮,范国章,等. 西非海岸盆地深水区油气地质特征和勘探前景[J]. 油气地质与采收率,2012,19(5):1-5.
Xu Zhicheng, Fuliang Lü, Fan Guozhang, et al. Deepwater petroleum geology and exploration potential of West Africa coastal basins[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(5): 1-5. |
[24] |
李全,吴伟,康洪全,等. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质,2019,40(4):917-929.
Li Quan, Wu Wei, Kang Hongquan, et al. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa[J]. Oil & Gas Geology, 2019, 40(4): 917-929. |
[25] |
蔡露露,谢晓军,李建平,等. 深水沉积差异及其对油气分布影响:以尼日尔三角洲盆地东西部深水扇为例[J]. 沉积学报,2022,40(1):229-243.
Cai Lulu, Xie Xiaojun, Li Jianping, et al. Influence of different modes of deep-water sedimentation on oil and gas distribution: A case study of deep-water fans in eastern and western Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 229-243. |
[26] |
赵鹏飞,杨香华,张会来,等. 深海浊积扇朵叶复合体的沉积构成特征与油气水系统:以尼日尔三角洲前缘深水区K油田为例[J]. 地球科学,2017,42(11):1972-1983.
Zhao Pengfei, Yang Xianghua, Zhang Huilai, et al. The sedimentary architecture characteristics and fluid system of the deep sea turbidite- lobe complex sandbodies: A case study of the deep-water region in the Niger Delta front[J]. Earth Science, 2017, 42(11): 1972-1983. |
[27] |
赵晓明,葛家旺,谭程鹏,等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气,2019,31(5):76-87.
Zhao Xiaoming, Ge Jiawang, Tan Chengpeng, et al. Research status and prospect of deep sea channel reservoir architecture and its response mechanism to synsedimentary structure[J]. China Offshore Oil and Gas, 2019, 31(5): 76-87. |