[1] Soreghan G S, Soreghan M J, Heavens N G. Explosive volcanism as a key driver of the Late Paleozoic ice age[J]. Geology, 2019, 47(7): 600-604.
[2] Montañez I P. Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record[J]. Geological Society, London, Special Publications, 2022, 512(1): 213-245.
[3] 仲钰天,陈吉涛,高彪,等. 晚古生代大冰期碳—水循环回顾与展望[J]. 科学通报,2023,68(12):1544-1556.

Zhong Yutian, Chen Jitao, Gao Biao, et al. Carbon-water cycles during the Late Paleozoic Ice Age: Reviews and prospects[J]. Chinese Science Bulletin, 2023, 68(12): 1544-1556.
[4] Isbell J L, Henry L C, Gulbranson E L, et al. Glacial paradoxes during the Late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation[J]. Gondwana Research, 2012, 22(1): 1-19.
[5] Fielding C R, Frank T D, Birgenheier L P. A revised, Late Palaeozoic glacial time-space framework for eastern Australia, and comparisons with other regions and events[J]. Earth-Science Reviews, 2023, 236: 104263.
[6] Li Y N, Shao L Y, Fielding C R, et al. The chemical index of alteration in Permo-Carboniferous strata in North China as an indicator of environmental and climate change throughout the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2023, 221: 104035.
[7] Montañez I P, Poulsen C J. The Late Paleozoic ice age: An evolving paradigm[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 629-656.
[8] Griffis N P, Montañez I P, Mundil R, et al. Coupled stratigraphic and U-Pb zircon age constraints on the Late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana[J]. Geology, 2019, 47(12): 1146-1150.
[9] Griffis N, Montañez I, Mundil R, et al. High-latitude ice and climate control on sediment supply across SW Gondwana during the Late Carboniferous and Early Permian[J]. GSA Bulletin, 2021, 133(9/10): 2113-2124.
[10] Yang J H, Cawood P A, Montañez I P, et al. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters, 2020, 534: 116074.
[11] Chen J T, Montañez I P, Zhang S, et al. Marine anoxia linked to abrupt global warming during Earth's penultimate icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2115231119.
[12] Marchetti L, Forte G, Kustatscher E, et al. The Artinskian Warming Event: An Euramerican change in climate and the terrestrial biota during the early Permian[J]. Earth-Science Reviews, 2022, 226: 103922.
[13] Sun F N, Hu W X, Cao J, et al. Sustained and intensified lacustrine methane cycling during Early Permian climate warming[J]. Nature Communications, 2022, 13(1): 4856.
[14] Hou Z S, Shen S Z, Henderson C M, et al. Cisuralian (Early Permian) paleogeographic evolution of South China Block and sea-level changes: Implications for the global Artinskian warming event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 613: 111395.
[15] Xia L W, Cao J, Hu W X, et al. Effects on global warming by microbial methanogenesis in alkaline lakes during the Late Paleozoic Ice Age (LPIA)[J]. Geology, 2023, 51(10): 935-940.
[16] Chen J T, Chen B, Montañez I P. Carboniferous isotope stratigraphy[J]. Geological Society, London, Special Publications, 2022, 512(1): 197-211.
[17] Montañez I P, Mcelwain J C, Poulsen C J, et al. Climate, pCO2 and terrestrial carbon cycle linkages during Late Palaeozoic glacial-interglacial cycles[J]. Nature Geoscience, 2016, 9(11): 824-828.
[18] Richey J D, Montañez I P, Goddéris Y, et al. Influence of temporally varying weather ability on CO2-climate coupling and ecosystem change in the Late Paleozoic[J]. Climate of the Past, 2020, 16(5): 1759-1775.
[19] Grossman E L, Yancey T E, Jones T E, et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 222-233.
[20] Eros J M, Montañez I P, Osleger D A, et al. Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: Insight into Carboniferous icehouse dynamics[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314: 1-25.
[21] Cleal C J, Thomas B A. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present?[J]. Geobiology, 2005, 3(1): 13-31.
[22] Davydov V. Warm water benthic foraminifera document the Pennsylvanian-Permian warming and cooling events–The record from the western Pangea tropical shelves[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414: 284-295.
[23] Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194.
[24] Yao J L, Cawood P A, Shu L S, et al. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
[25] Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
[26] Li X H, Li Z X, He B, et al. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons[J]. Chemical Geology, 2012, 328: 195-207.
[27] Gao B, Xin H, Huang X, et al. A record of enhanced water cycle in the Late Paleozoic icehouse[J]. Global and Planetary Change, 2022, 218: 103957.
[28] 焦大庆,马永生,邓军,等. 黔桂地区石炭纪层序地层格架及古地理演化[J]. 现代地质,2003,17(3):294-302.

Jiao Da-qing, Ma Yongsheng, Deng Jun, et al. The Sequence-stratigraphic framework and the evolution of paleogeography for Carboniferous of the Guizhou and Guangxi areas[J]. Geoscience, 2003, 17(3): 294-302.
[29] 冯增昭,杨玉卿,鲍志东. 中国南方石炭纪岩相古地理[J]. 古地理学报,1999,1(1):75-86.

Feng Zengzhao, Yang Yuqing, Bao Zhidong. Lithofacies palaeogeography of the Carboniferous in South China[J]. Journal of Palaeogeography, 1999, 1(1): 75-86.
[30] Koch J T, Frank T D. Imprint of the Late Palaeozoic Ice Age on stratigraphic and carbon isotopic patterns in marine carbonates of the Orogrande Basin, New Mexico, USA[J]. Sedimentology, 2012, 59(1): 291-318.
[31] Heckel P H. Pennsylvanian stratigraphy of northern midcontinent shelf and biostratigraphic correlation of cyclothems[J]. Stratigraphy, 2013, 10(1/2): 3-39.
[32] Ueno K, Hayakawa N, Nakazawa T, et al. Pennsylvanian-Early Permian cyclothemic succession on the Yangtze Carbonate Platform, South China[J]. Geological Society, London, Special Publications, 2013, 376(1): 235-267.
[33] Chen J T, Montañez I P, Qi Y P, et al. Coupled sedimentary and δ13C records of Late Mississippian platform-to-slope successions from South China: Insight into δ13C chemostratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 162-178.
[34] Huang X, Aretz M, Zhang X H, et al. Pennsylvanian-early Per-mian palaeokarst development on the Yangtze Platform, South China, and implications for the regional sea-level history[J]. Geological Journal, 2018, 53(4): 1241-1262.
[35] Chen J T, Sheng Q Y, Hu K Y, et al. Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108873.
[36] 杨文莉,仲钰天,辛浩,等. 安徽巢湖凤凰山晚古生代大冰期沉积特征与碳同位素变化[J]. 地层学杂志,2021,45(1):38-48.

Yang Wenli, Zhong Yutian, Xin Hao, et al. Sedimentary features and carbon isotope changes of the Late Paleozoic Ice Age recorded in Fenghuangshan, Chaohu, Anhui[J]. Journal of Stratigraphy, 2021, 45(1): 38-48.
[37] Qi Y P, Barrick J E, Hogancamp N J, et al. Conodont faunas across the Kasimovian-Gzhelian boundary (Late Pennsylvanian) in South China and implications for the selection of the stratotype for the base of the global Gzhelian Stage[J]. Papers in Palaeontology, 2020, 6(3): 439-484.
[38] Hu K Y, Wang X D, Qi Y P. Biostratigraphy and biofacies of the Kasimovian conodonts from the Shanglong section, South China[J]. Geological Society, London, Special Publications, 2023, 535(1): 409-437.
[39] Wu H C, Fang Q, Wang X D, et al. An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm[J]. Geology, 2019, 47(1): 83-86.
[40] Heckel P H. North American Midcontinent Pennsylvanian cyclothems and their implications[J]. Geological Society, London, Special Publications, 2023, 535(1): 131-166.
[41] 祁玉平, Barrick J E, Hogancamp N J,等. 牙形刺Idiognathodus simulator演化谱系研究进展及意义[J]. 微体古生物学报,2019,36(4):370-376.

Qi Yuping, Barrick J E, Hogancamp N J, et al. Lineage study of Idiognathodus simulator (conodont) and its implications[J]. Acta Micropalaeontologica Sinica, 2019, 36(4): 370-376.
[42] Patterson W P, Walter L M. Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates[J]. Geology, 1994, 22(10): 885-888.
[43] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[44] Dunham R J. Classification of carbonate rocks according to depositional texture[M]//Ham W E. Classification of carbonate rocks: A symposium. Tulsa: American Association of Petroleum Geologists, 1962: 108-122.
[45] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010.
[46] Kietzmann D A, Palma R M, Riccardi A C, et al. Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the southern Mendoza area of the Neuquén Basin, Argentina[J]. Sedimentary Geology, 2014, 302: 64-86.
[47] Korn D. Early Carboniferous (Mississippian) calciturbidites in the northern Rhenish mountains (Germany)[J]. Geological Journal, 2008, 43(2/3): 151-173.
[48] Reijmer J J G, Palmieri P, Groen R. Compositional variations in calciturbidites and calcidebrites in response to sea-level fluctuations (Exuma Sound, Bahamas)[J]. Facies, 2012, 58(4): 493-507.
[49] Li W J, Chen J T, Hakim A J, et al. Middle Ordovician mass-transport deposits from western Inner Mongolia, China: Mechanisms and implications for basin evolution[J]. Sedimentology, 2022, 69(3): 1301-1338.
[50] Angulo S, Buatois L A. Ichnology of a Late Devonian-Early Carboniferous low-energy seaway: The Bakken Formation of subsurface Saskatchewan, Canada: Assessing paleoenvironmental controls and biotic responses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315-316: 46-60.
[51] Rodríguez-Tovar F J, Pujalte V, Payros A. Danian-Lower Selandian Microcodium-rich calcarenites of the Subbetic Zone (SE Spain): Record of Nereites ichnofacies in a deep-sea, base-of-slope system[J]. Sedimentary Geology, 2020, 406: 105723.
[52] Barrick J E, Alekseev A S, Blanco-Ferrera S, et al. Carboniferous conodont biostratigraphy[J]. Geological Society, London, Special Publications, 2022, 512(1): 695-768.
[53] Davydov V I, Crowley J L, Schmitz M D, et al. High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(2): Q0AA04.
[54] Barrick J E, Lambert L L, Heckel P H, et al. Midcontinent Pennsylvanian conodont zonation[J]. Stratigraphy, 2013, 10(1/2): 55-72.
[55] Sungatullina G M, Davydov V I. New data on conodonts from the Kasimovian Stage of the Usolka section, southern Ural Mountains[J]. Paleontological Journal, 2015, 49(10): 1142-1149.
[56] Heckel P H. Genetic stratigraphy and conodont biostratigraphy of Upper Desmoinesian-Missourian (Pennsylvanian) cyclothem succession in Midcontinent North America[J]. Memoir-Canadian Society of Petroleum Geologists, 2002, 19: 99-119.
[57] Hogancamp N J, Barrick J E, Strauss R E. Geometric morphometric analysis and taxonomic revision of the Gzhelian (Late Pennsylvanian) conodont Idiognathodus simulator from North America[J]. Acta Palaeontologica Polonica, 2016, 61(3): 477-502.
[58] Schmitz M D, Davydov V I. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian-Early Permian (Cisuralian) time scale and pan-Euramerican chronostratigraphic correlation[J]. Geological Society of America Bulletin, 2012, 124(3/4): 549-577.
[59] Hogancamp N J, Rosscoe S J, Barrick J E. Geometric morphometric analysis of P1 element asymmetry in the Late Pennsylvanian conodont Idiognathodus magnificus Stauffer and Plummer 1932[J]. Stratigraphy, 2017, 14(1/2/3/4): 179-196.
[60] 王向东,胡科毅,郄文昆,等. 中国石炭纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):139-159.

Wang Xiangdong, Hu Keyi, Wenkun Qie, et al. Carboniferous integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 49(1): 139-159.
[61] Saltzman M R. Late Paleozoic ice age: Oceanic gateway or pCO2?[J]. Geology, 2003, 31(2): 151-154.
[62] Davydov V I, Schmitz M D, Snyder W S, et al. Progress toward development of the Cisuralian (Lower Permian) timescale (biostratigraphy, chronostratigraphy, radiometric calibration)[M]//Lucas S G, Zeigler K E. The nonmarine Permian: Bulletin 30. New Mexico: New Mexico Museum of Natural History, 2005: 48-55.
[63] Ross C A, Ross J R P. Paleontology, a tool to resolve Late Paleozoic structural and depositional histories[M]//Demchuk T D, Gary A C. Geologic problem solving with microfossils: A volume in honor of Garry D. Jones: Society for Sedimentary Geology, 2009.
[64] 郄文昆,王向东. 石炭纪—早二叠世滇黔桂盆地北缘深水区的地层序列及沉积演化[J]. 地质科学,2012,47(4):1071-1084.

Wenkun Qie, Wang Xiangdong. Carboniferous-Early Permian deep-water succession in northern margin of the Dian-Qian-Gui Basin and its sedimentary evolution[J]. Chinese Journal of Geology, 2012, 47(4): 1071-1084.
[65] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796.
[66] Tian X X, Chen J T, Yao L, et al. Glacio-eustasy and δ13C across the Mississippian-Pennsylvanian boundary in the eastern Paleo-Tethys Ocean (South China): Implications for mid-Carboniferous major glaciation[J]. Geological Journal, 2020, 55(4): 2704-2716.
[67] Yang W L, Chen J T, Gao B, et al. Sedimentary facies and carbon isotopes of the Upper Carboniferous to Lower Permian in South China: Implications for icehouse to greenhouse transition[J]. Global and Planetary Change, 2023, 221: 104051.
[68] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[69] Davydov V I, Korn D, Schmitz M D, et al. The Carboniferous Period[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 603-651.
[70] Eros J M, Montañez I P, Davydov V I, et al. Reply to the comment on “Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: Insight into Carboniferous icehouse dynamics”[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 363-364: 187-191.
[71] Boardman II D R, Wardlaw B R, Nestell M K. Stratigraphy and conodont biostratigraphy of the uppermost Carboniferous and Lower Permian from the north American Midcontinent[R]. Reston: Florence Bascom Geoscience Center, 2009.
[72] Ogg J G, Ogg G M, Gradstein F M. Carboniferous[M]//Ogg J G, Ogg G M, Gradstein F M. A concise geologic time scale. Amsterdam: Elsevier, 2016: 99-113.
[73] Aretz M, Herbig H G, Wang X D, et al. The Carboniferous Period[J]. Geologic Time Scale 2020, 2020, 2: 811-874.
[74] Buggisch W, Wang X D, Alekseev A S, et al. Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 301(1/2/3/4): 18-38.
[75] Hays P D, Grossman E L. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate[J]. Geology, 1991, 19(5): 441-444.
[76] Nemyrovska T I. Late Mississippian-Middle Pennsylvanian conodont zonation of Ukraine[J]. Stratigraphy, 2017, 14(1/2/3/4): 299-318.
[77] Lv D W, Chen J T. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions (Shandong province, China): Sequence development in an epicontinental basin[J]. Journal of Asian Earth Sciences, 2014, 79: 16-30.
[78] Chen A Q, Zou H, Ogg J G, et al. Source-to-sink of Late Carboniferous Ordos Basin: Constraints on crustal accretion margins converting to orogenic belts bounding the North China Block[J]. Geoscience Frontiers, 2020, 11(6): 2031-2052.
[79] Cramer B D, Jarvis I. Carbon isotope stratigraphy[J]. Geologic Time Scale 2020, 2020, 1: 309-343.