[1] McLennan S M, Taylor S R, Kröner A. Geochemical evolution of Archean shales from South Africa. I. The Swaziland and Pongola Supergroups[J]. Precambrian Research, 1983, 22(1/2): 93-124.
[2] 李明月,孙学军, Karki K,等. 喜马拉雅山中段柯西河跨境流域河流沉积物的矿物和元素特征[J]. 矿物岩石地球化学通报,2019,38(5):989-997.

Li Mingyue, Sun Xuejun, Karki K, et al. Mineral and elemental characteristics of bed sediments in the trans-boundary Koshi River basin in the central Himalayas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 989-997.
[3] 陈丹婷,彭渤,方小红,等. 洞庭湖“四水”入湖河床沉积物主量元素地球化学特征及意义[J]. 第四纪研究,2021,41(5):1267-1280.

Chen Danting, Peng Bo, Fang Xiaohong, et al. Geoche-mistry of major elements in bed sediments from inlets of the four rivers to Dongting Lake, China[J]. Quaternary Sciences, 2021, 41(5): 1267-1280.
[4] 杨允柳,何云龙,解习农,等. 湄公河三角洲第四系沉积物地球化学特征及其地质意义[J]. 地球科学,2022,47(3):1107-1121.

Yang Yunliu, He Yunlong, Xie Xinong, et al. Geochemical characteristics and geological significance of Quaternary sediments in the Mekong delta[J]. Earth Science, 2022, 47(3): 1107-1121.
[5] Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial Upper Nile and Congo muds[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(2): 292-316.
[6] Guo Y L, Yang S Y, Su N, et al. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta, 2018, 227: 48-63.
[7] Wu P, Xie Y Y, Kang C G, et al. Effects of provenance, transport processes and chemical weathering on heavy mineral composition: A case study from the Songhua River drainage, NE China[J]. Frontiers in Earth Science, 2022, 10: 839745.
[8] Barbour G B. Physiographic history of the Yangtze[J]. The Geographical Journal, 1936, 87(1): 17-32.
[9] Zheng H B. Birth of the Yangtze River: Age and tectonic-geomorphic implications[J]. National Science Review, 2015, 2(4): 438-453.
[10] Wei H H, Wang E, Wu G L, et al. No sedimentary records indicating southerly flow of the paleo-upper Yangtze River from the first bend in southeastern Tibet[J]. Gondwana Research, 2016, 32: 93-104.
[11] 魏传义,尹功明,刘春茹,等. 长江现代河流沉积物石英ESR信号强度空间分布特征及其物源示踪意义[J]. 第四纪研究,2022,42(4):1168-1180.

Wei Chuanyi, Yin Gongming, Liu Chunru, et al. Spatial diversity of quartz ESR signal intensity of the modern Yangtze River fluvial sediments and its implications for sediment provenance[J]. Quaternary Sciences, 2022, 42(4): 1168-1180.
[12] 李吉均,方小敏,马海洲,等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学:地球科学,1996,26(4):316-322.

Li Jijun, Fang Xiaomin, Ma Haizhou, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the Late Cenozoic[J]. Science China: Earth Sciences, 1996, 26(4): 316-322.
[13] 傅建利,张珂,马占武,等. 中更新世晚期以来高阶地发育与中游黄河贯通[J]. 地学前缘,2013,20(4):166-181.

Fu Jianli, Zhang Ke, Ma Zhanwu, et al. The terrace (T5 and T4) formation since the late Middle Pleistocene and its implication in the through cutting of the middle reach of Yellow River[J]. Earth Science Frontiers, 2013, 20(4): 166-181.
[14] 赵希涛,杨艳,贾丽云,等. 论晚期共和古湖时代、演化过程及其与地壳运动和黄河发育的关系[J]. 地球学报,2021,42(4):451-471.

Zhao Xitao, Yang Yan, Jia Liyun, et al. A discussion on the age and evolution process of the late Gonghe paleolake and its relations with the crustal movement and the development of the Yellow River[J]. Acta Geoscientica Sinica, 2021, 42(4): 451-471.
[15] 宋国利,刘钊,于桂云. 黑龙江省松花江流域主要岩石类型中若干元素的背景含量及其环境意义[J]. 哈尔滨师范大学自然科学学报,1986(4):113-121.

Song Guoli, Liu Zhao, Yu Guiyun. Background contents and environmental significance of some elements in major rock types in Songhua River basin[J]. Natural Science Journal of Harbin Normal University, 1986(4): 113-121.
[16] Xie Y Y, Kang C G, Chi Y P, et al. Reversal of the middle-upper Songhua River in the late Early Pleistocene, northeast China[J]. Geomorphology, 2020, 369: 107373.
[17] 李思琪,谢远云,康春国,等. 物源—河流过程—化学风化对松花江水系沉积物重矿物组成的影响[J]. 地质科学,2022,57(1):207-229.

Li Siqi, Xie Yuanyun, Kang Chunguo, et al. Influence of provenance-river process-chemical weathering on heavy mineral composition of the Songhua River sediment[J]. Chinese Journal of Geology, 2022, 57(1): 207-229.
[18] 吴鹏,谢远云,康春国,等. 早更新世晚期松花江水系袭夺:地球化学和沉积学记录[J]. 地质学报,2020,94(10):3144-3160.

Wu Peng, Xie Yuanyun, Kang Chunguo, et al. The capture of the Songhua River system in the late Early Pleistocene: Geochemical and sedimentological records[J]. Acta Geologica Sinica, 2020, 94(10): 3144-3160.
[19] 魏振宇,谢远云,康春国,等. 早更新世松花江水系反转:来自荒山岩芯Sr-Nd同位素特征指示[J]. 沉积学报,2020,38(6):1192-1203.

Wei Zhenyu, Xie Yuanyun, Kang Chunguo, et al. The inversion of the Songhua River system in the Early Pleistocene: Implications from Sr-Nd isotopic composition in the Harbin Huangshan cores[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1192-1203.
[20] 孙忠,贾长青. 松花江流域蓄滞洪区建设有关问题探讨[J]. 东北水利水电,2007,25(10):31-33.

Sun Zhong, Jia Changqing. Discussion on the construction of flood storage and detention area in Songhua River basin[J]. Water Resources & Hydropower of Northeast China, 2007, 25(10): 31-33.
[21] 魏春艳,谢远云,康春国,等. 哈尔滨地区罗家窝棚组地层的沉积学、矿物学及地球化学特征:对沉积环境的指示[J]. 地质科学,2022,57(1):172-189.

Wei Chunyan, Xie Yuanyun, Kang Chunguo, et al. Sedimentological, mineralogical, and geochemical characteristics of the Luojiawopeng Fm. in Harbin: Implications for the sedimentary environment[J]. Chinese Journal of Geology, 2022, 57(1): 172-189.
[22] 袁方,谢远云,迟云平. 哈尔滨尘暴天气沉降物的物质组成及其对物源的限制[J]. 中国地质,2018,45(6):1177-1187.

Yuan Fang, Xie Yuanyun, Chi Yunping. Material characteristics of dust fallouts during the dust-storm weather in Harbin: Constraint on the provenance[J]. Geology in China, 2018, 45(6): 1177-1187.
[23] 孙建华,谢远云,康春国,等. 大兴安岭东麓平安镇白土山组的地层属性:对物源和沉积环境的指示[J]. 地层学杂志,2022,46(2):196-208.

Sun Jianhua, Xie Yuanyun, Kang Chunguo, et al. Stratigraphic properties of the Baitushan Formation in Ping’an town, the eastern foot of the Great Hinggan Mountains: An indication of provenance and sedimentary environment[J]. Journal of Stratigraphy, 2022, 46(2): 196-208.
[24] 孙磊,谢远云,康春国,等. 呼伦贝尔沙地重矿物、Sr-Nd同位素组成及其对亚洲风尘系统的指示[J]. 中国地质,2021,48(6):1965-1974.

Sun Lei, Xie Yuanyun, Kang Chunguo, et al. Heavy minerals, Sr-Nd isotopic composition of sandy land in Hulun Buir, Inner Mongolia and their implications for Asian aeolian dust system[J]. Geology in China, 2021, 48(6): 1965-1974.
[25] 康春国,李长安,王节涛,等. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学:中国地质大学学报,2009,34(3):419-427.

Kang Chunguo, Li Chang’an, Wang Jietao, et al. Heavy minerals characteristics of sediments in Jianghan plain and its indication to the forming of the Three Gorges[J]. Earth Science: Journal of China University of Geosciences, 2009, 34(3): 419-427.
[26] 王嘉新,谢远云,康春国,等. 哈尔滨荒山岩心重矿物特征对松花江第四纪水系演化的指示[J]. 第四纪研究,2020,40(1):79-94.

Wang Jiaxin, Xie Yuanyun, Kang Chunguo, et al. The indication of the heavy mineral characteristics of the core in Harbin Huangshan to the Quaternary drainage evolution of Songhua River[J]. Quaternary Sciences, 2020, 40(1): 79-94.
[27] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 57-72.
[28] 由文智,向芳,黄恒旭,等. 青藏高原东缘宜宾地区第四纪河流沉积物中铁质重矿物特征及物源意义[J]. 地学前缘,2022,29(4):278-292.

You Wenzhi, Xiang Fang, Huang Hengxu, et al. Characteristics and provenance significance of iron-rich heavy minerals in Quaternary fluvial sediments in Yibin area, eastern margin of Tibetan Plateau[J]. Earth Science Frontiers, 2022, 29(4): 278-292.
[29] 田豹. 重矿物物源分析研究进展[J]. 中国锰业,2017,35(1):107-109,115.

Tian Bao. A research progress in provenance analysis of heavy minerals[J]. China’s Manganese Industry, 2017, 35(1): 107-109, 115.
[30] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earch Sciences and Environment, 2011, 33(4): 337-348.
[31] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
[32] Laceby J P, Evrard O, Smith H G, et al. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review[J]. Earth-Science Reviews, 2017, 169: 85-103.
[33] 李绪龙,张霞,林春明,等. 常用化学风化指标综述:应用与展望[J]. 高校地质学报,2022,28(1):51-63.

Li Xulong, Zhang Xia, Lin Chunming, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63.
[34] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[35] Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504.
[36] Nicholls G D. Environmental studies in sedimentary geochemistry[J]. Science Progress, 1963, 51(201): 12-31.
[37] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock che-mistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
[38] 陈骏,安芷生,刘连文,等. 最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学:地球科学,2001,31(2):136-145.

Chen Jun, An Zhisheng, Liu Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland[J]. Science China: Earth Sciences, 2001, 31(2): 136-145.
[39] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[40] Ahmad I, Chandra R. Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering[J]. Journal of Asian Earth Sciences, 2013, 66: 73-89.
[41] Dey S, Rai A K, Chaki A. Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami Basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry[J]. Journal of Asian Earth Sciences, 2009, 34(6): 703-715.
[42] Armstrong-Altrin J S, Machain-Castillo M L. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the gulf of Mexico, Mexico[J]. Journal of South American Earth Sciences, 2016, 71: 182-200.
[43] Ohta T. Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin, SW Japan: Implication of factor analysis to sorting effects and provenance signatures[J]. Sedimentary Geo-logy, 2004, 171(1/2/3/4): 159-180.
[44] 李秋杭,谢远云,康春国,等. 基于人工和TIMA自动化方法的松花江水系重矿物组成:对源—汇物源示踪的指示[J]. 海洋地质与第四纪地质,2022,42(3):170-183.

Li Qiuhang, Xie Yuanyun, Kang Chunguo, et al. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170-183.
[45] Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the tobacco root batholith, Montana, U.S.A.[J]. Chemical Geology, 1988, 70(4): 335-348.
[46] Cullers R L. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A.[J]. Chemical Geology, 1995, 123(1/2/3/4): 107-131.
[47] Condie K C, Wronkiewicz D J. The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution[J]. Earth and Planetary Science Letters, 1990, 97(3/4): 256-267.
[48] Feng R, Kerrich R. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1061-1081.
[49] Spalletti L A, Queralt I, Matheos S D, et al. Sedimentary petrology and geochemistry of siliciclastic rocks from the Upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting[J]. Journal of South American Earth Sciences, 2008, 25(4): 440-463.
[50] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
[51] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
[52] Ling Z Y, Yang S L, Xia D S, et al. Source of the aeolian sediments in the Yarlung Tsangpo valley and its potential dust contribution to adjacent oceans[J]. Earth Surface Processes and Landforms, 2022, 47(7): 1860-1871.
[53] Xie Y Y, Liu L, Kang C G, et al. Sr-Nd isotopic characteristics of the northeast sandy land, China and their implications for tracing sources of regional dust[J]. CATENA, 2020, 184: 104303.
[54] 郑海飞,郝瑞霞. 普通地球化学[M]. 北京:北京大学出版社,2007:76-79.

Zheng Haifei, Hao Ruixia. General geochemistry[M]. Beijing: Peking University Press, 2007: 76-79.
[55] Yang J D, Li G J, Rao W B, et al. Isotopic evidences for provenance of East Asian dust[J]. Atmospheric Environment, 2009, 43(29): 4481-4490.
[56] Rao W B, Mao C P, Wang Y G, et al. Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwestern Yellow Sea[J]. Applied Geochemistry, 2017, 81: 23-35.
[57] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38.
[58] Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/2/3/4): 3-29.
[59] 何梦颖. 长江河流沉积物矿物学、地球化学和碎屑锆石年代学物源示踪研究[D]. 南京:南京大学,2014.

He Mengying. The provenance study on the Yangtze River sediments, based on mineralogy, geochemistry and detrital zircon dating[D]. Nanjing: Nanjing University, 2014.