[1] 韦恒叶,胡谍,邱振,等. 川北—鄂西上二叠统富有机岩沉积与地球化学特征[J]. 沉积学报, 2024, 42(3):766-789.

Wei Hengye, Hu Die, Qiu Zhen, et al. Sedimentological and geochemical characteristics of Late Permian organic-rich rocks in north Sichuan and west Hubei provinces[J]. Acta Sedimentologica Sinica, 2024, 42(3): 766-789.
[2] 邱振,窦立荣,吴建发,等. 川北—鄂西地区中二叠统层序岩相古地理演化及页岩气勘探潜力[J]. 地球科学,2024,49(2):712-748.

Qiu Zhen, Dou Lirong, Wu Jianfa, et al. Lithofacies palaeogeographic evolution of the Middle Permian sequence stratigraphy and its implications for shale gas exploration in the northern Sichuan and western Hubei provinces[J]. Earth Science, 2024, 49(2): 712-748.
[3] Mundil R, Ludwig K R, Metcalfe I, et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons[J]. Science, 2004, 305(5691): 1760-1763.
[4] Zhong Y T, Mundil R, Chen J, et al. Geochemical, biostratigraphic, and high-resolution geochronological constraints on the waning stage of Emeishan large igneous province[J]. GSA Bulletin, 2020, 132(9/10): 1969-1986.
[5] 朱洪发,秦德余,刘翠章. 论华南孤峰组和大隆组硅质岩成因、分布规律及其构造机制[J]. 石油实验地质,1989,11(4):341-348.

Zhu Hongfa, Qin Deyu, Liu Cuizhang. On the origin, distributive pattern and tectonic control of siliceous rocks in Gufeng and Dalong Formations, South China[J]. Experimental Petroleum Geology, 1989, 11(4): 341-348.
[6] 雷卞军,阙洪培,胡宁,等. 鄂西古生代硅质岩的地球化学特征及沉积环境[J]. 沉积与特提斯地质,2002,22(2):70-79.

Lei Bianjun, Que Hongpei, Hu Ning, et al. Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in western Hubei[J]. Sedimentary Geology and Tethyan Geology, 2002, 22(2): 70-79.
[7] Chen H, Xie X N, Hu C Y, et al. Geochemical characteristics of Late Permian sediments in the Dalong Formation of the Shangsi section, northwest Sichuan Basin in South China: Implications for organic carbon-rich siliceous rocks formation[J]. Journal of Geochemical Exploration, 2012, 112: 35-53.
[8] 方雪,周瑶琪,姚旭,等. 四川广元上寺上二叠统硅质岩地球化学特征及成因分析[J]. 矿物岩石,2017,37(1):93-102.

Fang Xue, Zhou Yaoqi, Yao Xu, et al. Geochemical characteristics and petrogenesis of siliceous rocks from Shangsi section in Guangyuan, Sichuan province[J]. Journal of Mineralogy and Petrology, 2017, 37(1): 93-102.
[9] 徐跃通. 鄂东南晚二叠世大隆组层状硅质岩成因地球化学及沉积环境[J]. 桂林工学院学报,1997,17(3):204-212.

Xu Yuetong. Genetic geochemistry for the bedded silicalite in the Late Permian Dalong Formation and its sedimentary setting in southeastern Hubei[J]. Journal of Guilin Institute of Technology, 1997, 17(3): 204-212.
[10] Gao P, Xiao X M, Meng G M, et al. Quartz types and origins of the Upper Permian Dalong Formation shale of the Sichuan Basin: Implications for pore preservation in deep shale reservoirs[J]. Marine and Petroleum Geology, 2023, 156: 106461.
[11] 杜远生,殷鸿福,王治平. 秦岭造山带晚加里东—早海西期的盆地格局与构造演化[J]. 地球科学:中国地质大学学报,1997,22(4):401-405.

Du Yuansheng, Yin Hongfu, Wang Zhiping. The Late Caledonian-Early Hercynian basin’s framework and tectonic evolution of Qingling orogenic belt[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(4): 401-405.
[12] 陈洪德,王成善,刘文均,等. 华南二叠纪层序地层与盆地演化[J]. 沉积学报,1999,17(4):529-535.

Chen Hongde, Wang Chengshan, Liu Wenjun, et al. Permian sequence stratigraphy and basin evolution in south of China[J]. Acta Sedimentologica Sinica, 1999, 17(4): 529-535.
[13] 梁新权,周云,蒋英,等. 二叠纪东吴运动的沉积响应差异:来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMS U-Pb年龄研究[J]. 岩石学报,2013,29(10):3592-3606.

Liang Xinquan, Zhou Yun, Jiang Ying, et al. Difference of sedimentary response to Dongwu Movement: Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia Blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606.
[14] He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 391-405.
[15] Xu J F, Suzuki K, Xu Y G, et al. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province[J]. Geochimica et Cosmochimica Acta, 2007, 71(8): 2104-2119.
[16] Liu Y D, Li L, van Wijk J, et al. Surface-wave tomography of the Emeishan large igneous province (China): Magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction[J]. Geology, 2021, 49(9): 1032-1037.
[17] Xu Y G, He B, Chung S L, et al. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology, 2004, 32(10): 917-920.
[18] Liu X Y, Qiu N S, Søager N, et al. Geochemistry of Late Permian basalts from boreholes in the Sichuan Basin, SW China: Implications for an extension of the Emeishan large igneous pro-vince[J]. Chemical Geology, 2022, 588: 120636.
[19] Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23(10): 889-892.
[20] Thompson G M, Ali J R, Song X Y, et al. Emeishan basalts, SW China: Reappraisal of the formation’s type area stratigraphy and a discussion of its significance as a large igneous province[J]. Journal of the Geological Society, 2001, 158(4): 593-599.
[21] Ali J R, Thompson G M, Song X, et al. Emeishan basalts (SW China) and the ‘end-Guadalupian’ crisis: Magnetobiostratigraphic constraints[J]. Journal of the Geological Society, 2002, 159(1): 21-29.
[22] Pirajno F. Mantle plumes, associated intraplate tectonomagmatic processes and ore systems[J]. Episodes, 2007, 30(1): 6-19.
[23] He B, Xu Y G, Wang Y M, et al. Sedimentation and lithofacies paleogeography in southwestern China before and after the Emeishan flood volcanism: New insights into surface response to mantle plume activity[J]. The Journal of Geology, 2006, 114(1): 117-132.
[24] Hou Z S, Fan J X, Henderson C M, et al. Dynamic palaeogeographic reconstructions of the Wuchiapingian stage (Lopingian, Late Permian) for the South China Block[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109667.
[25] 胡德高,周林,包汉勇,等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报,2023,44(2):241-252.

Hu Degao, Zhou Lin, Bao Hanyong, et al. Breakthrough and significance of Permian shale gas exploration of well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252.
[26] 杨雨,汪华,谢继容,等. 页岩气勘探新领域:四川盆地开江—梁平海槽二叠系海相页岩气勘探突破及展望[J]. 天然气工业,2023,43(11):19-27.

Yang Yu, Wang Hua, Xie Jirong, et al. Exploration breakthrough and prospect of Permian marine shale gas in the Kaijiang-Liangping trough, Sichuan Basin[J]. Natural Gas Industry, 2023, 43(11): 19-27.
[27] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
[28] Ahrens L H. Some observations on the uranium and thorium distributions in accessory zircon from granitic rocks[J]. Geochimica et Cosmochimica Acta, 1965, 29(6): 711-716.
[29] Hoskin P W O. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon[J]. Geochimica et Cosmochimica Acta, 2000, 64(11): 1905-1923.
[30] Belousova E, Griffin W, O’Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
[31] Grimes C B, Wooden J L, Cheadle M J, et al. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 170(5/6): 46.
[32] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[33] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23: 251-285.
[34] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3/4): 144-162.
[35] Yang J H, Cawood P A, Du Y S, et al. Large igneous province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261-262: 120-131.
[36] Hoskin P W O, Kinny P D, Wyborn D, et al. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach[J]. Journal of Petrology, 2000, 41(9): 1365-1396.
[37] Tani K, Dunkley D J, Kimura J I, et al. Syncollisional rapid granitic magma formation in an arc-arc collision zone: Evidence from the Tanzawa plutonic complex, Japan[J]. Geology, 2010, 38(3): 215-218.
[38] Huang H, Cawood P A, Hou M C, et al. Provenance of Late Permian volcanic ash beds in South China: Implications for the age of Emeishan volcanism and its linkage to climate cooling[J]. Lithos, 2018, 314-315: 293-306.
[39] Pirajno F, Santosh M. Mantle plumes, supercontinents, intracontinental rifting and mineral systems[J]. Precambrian Research, 2015, 259: 243-261.
[40] Falkenberg J J, Keith M, Haase K M, et al. Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2021, 307: 105-132.
[41] Wilson M. Thermal evolution of the Central Atlantic passive margins: Continental break-up above a Mesozoic super-plume[J]. Journal of the Geological Society, 1997, 154(3): 491-495.
[42] Ernst R E, Buchan K L. Recognizing mantle plumes in the geological record[J]. Annual Review of Earth and Planetary Sciences, 2003, 31: 469-523.
[43] Xie S C, Pancost R D, Wang Y B, et al. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.