[1] |
Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. |
[2] |
Sømme T O, Jackson C A L, Vaksdal M. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 1-depositional setting and fan evolution[J]. Basin Research, 2013, 25(5): 489-511. |
[3] |
王成善,林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报,2021,40(6):1217-1229.
Wang Chengshan, Lin Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1217-1229. |
[4] |
林畅松,夏庆龙,施和生,等.地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1):9-20.
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1):9-20. |
[5] |
高抒.美国《洋陆边缘科学计划2004》述评[J].海洋地质与第四纪地质, 2005, 25(1):119-123.
Gao Shu. Comments on the “NSF Margins Program Science Plans 2004” [J]. Marine Geology & Quaternary Geology, 2005, 25(1):119-123. |
[6] |
李铁刚,曹奇原,李安春,等. 从源到汇:大陆边缘沉积作用[J]. 地球科学进展,2003,18(5):713-721.
Li Tiegang, Cao Qiyuan, Li Anchun. Source to sink: Sedimentation in the continental margins[J]. Advances in Earth Sciences, 2003, 18(5): 713-721. |
[7] |
徐长贵. 陆相断陷盆地源—汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J]. 中国海上油气,2013,25(4):1-11,21.
Xu Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: Basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11, 21. |
[8] |
李顺利,朱筱敏,李慧勇,等. 源—汇系统要素定量表征及耦合模式:以沙垒田凸起与沙南凹陷沙河街组为例[J]. 中国海上油气,2017,29(4):39-50.
Li Shunli, Zhu Xiaomin, Li Huiyong, et al. Quantitative characterization of elements and coupling mode in source-to-sink system: A case study of the Shahejie Formation between the Shaleitian uplift and Shanan Sag, Bohai Sea[J]. China Offshore Oil and Gas, 2017, 29(4): 39-50. |
[9] |
朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870.
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. |
[10] |
聂银兰,朱筱敏,董艳蕾,等. 陆相断陷盆地源—汇系统要素表征及研究展望[J]. 地质论评,2022,68(5):1881-1896.
Nie Yinlan, Zhu Xiaomin, Dong Yanlei, et al. Characterization and research prospect of source-to-sink system elements in continental rift basin[J]. Geological Review, 2022, 68(5): 1881-1896. |
[11] |
Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. |
[12] |
邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.
Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81. |
[13] |
Blum M, Martin J, Milliken K, et al. Paleovalley systems: Insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169. |
[14] |
Helland-Hansen W, Sømme T O, Martinsen O J, et al. Deciphering earth's natural hourglasses: Perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1008-1033. |
[15] |
操应长,徐琦松,王健. 沉积盆地“源—汇”系统研究进展[J]. 地学前缘,2018,25(4):116-131.
Cao Yingchang, Xu Qisong, Wang Jian. Progress in “source-to-sink” system research[J]. Earth Science Frontiers, 2018, 25(4): 116-131. |
[16] |
徐长贵,杜晓峰,徐伟,等. 沉积盆地“源—汇”系统研究新进展[J]. 石油与天然气地质,2017,38(1):1-11.
Xu Changgui, Du Xiaofeng, Xu Wei, et al. New advances of the “source-to-sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. |
[17] |
陆威延,朱红涛,徐长贵,等. 源—汇系统级次划分方法及应用[J]. 地球科学,2020,45(4):1327-1336.
Lu Weiyan, Zhu Hongtao, Xu Changgui, et al. Methods and applications of level subdivision of source-to-sink system[J]. Earth Science, 2020, 45(4): 1327-1336. |
[18] |
谈明轩,朱筱敏,张自力,等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118.
Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “source-to-sink” systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118. |
[19] |
Tan M X, Scholz C A. Source-to-sink response to high-amplitude lake level rise driven by orbital-scale climate change: An example from the Pleistocene Lake Malawi (Nyasa) Rift, East Africa[J]. Sedimentology, 2021, 68(7): 3494-3522. |
[20] |
徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396.
Xu Jie, Jiang Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(3): 379-396. |
[21] |
Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980. |
[22] |
Saylor J E, Sundell K E, Sharman G R. Characterizing sediment sources by non-negative matrix factorization of detrital geochronological data[J]. Earth and Planetary Science Letters, 2019, 512: 46-58. |
[23] |
Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082. |
[24] |
Chen H H, Wood L J, Gawthorpe R L. Sediment dispersal and redistributive processes in axial and transverse deep‐time source‐to‐sink systems of marine rift basins: Dampier sub‐basin, northwest shelf, Australia[J]. Basin Research, 2021, 33(1): 227-249. |
[25] |
Hovius N. Regular spacing of drainage outlets from linear mountain belts[J]. Basin Research, 1996, 8(1): 29-44. |
[26] |
Schumm S A, Winkley B R. The character of large alluvial rivers[M]//Schumm S A, Winkley B R. The variability of large alluvial rivers. New York: American Society of Civil Engineers, 1994: 1-9. |
[27] |
Davidson S K, North C P. Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record[J]. Journal of Sedimentary Research, 2009, 79(10): 773-792. |
[28] |
Snedden J W, Galloway W E, Milliken K T, et al. Validation of empirical source-to-sink scaling relationships in a continental-scale system: The gulf of Mexico Basin Cenozoic record[J]. Geosphere, 2018, 14(2): 768-784. |
[29] |
徐长贵,龚承林. 从层序地层走向源—汇系统的储层预测之路[J]. 石油与天然气地质,2023,44(3):521-538.
Xu Changgui, Gong Chenglin. Predictive stratigraphy: From sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology, 2023, 44(3): 521-538. |
[30] |
谈明轩,朱筱敏,张自力,等. 构造掀斜主导的断陷湖盆缓坡层序“源—汇”正演模拟定量研究[J]. 沉积学报,2022,40(6):1481-1493.
Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Source-to-sink quantitative stratigraphic forward modeling on the tilted hanging-wall sequence architecture of a tectonically-driven lacustrine rift basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1481-1493. |
[31] |
Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19. |
[32] |
Zhang J Y, Covault J, Pyrcz M, et al. Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, gulf of Mexico[J]. AAPG Bulletin, 2018, 102(9): 1685-1702. |
[33] |
Brewer C J, Hampson G J, Whittaker A C, et al. Comparison of methods to estimate sediment flux in ancient sediment routing systems[J].Earth-Science Reviews, 2020, 207:103217.. |
[34] |
Nyberg B, Helland‐Hansen W, Gawthorpe R, et al. Assessing first‐order BQART estimates for ancient source‐to‐sink mass budget calculations[J].Basin Research, 2021, 33(4), 2435-2452. |
[35] |
刘泽,李三忠, Bukhari S W H,等. 动态古地貌再造:Badlands软件在盆地分析中的应用[J]. 古地理学报,2020,22(1):29-38.
Liu Ze, Li Sanzhong, Bukhari S W H, et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(1): 29-38. |
[36] |
Yang X M. Realistic and theoretical 3D modelling of the sedimentation, burial, thermal and tectonic history of the Gippsland Rift Basin[D]. Bentley: Curtin University, 2022. |
[37] |
Yang X M, Smith G, Gupta R. Basin analysis palaeo-landscape modelling: Testing the critical controls using experimental design constrained by a real 3D geological model, Gippsland Basin, Australia [J]. Basin Research, 2023, 35(1), 214-243. |
[38] |
Sømme T O, Helland-Hansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
[39] |
Covault J A, Romans B W, Graham S A, et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: Insights from tectonically active southern California[J]. Geology, 2011, 39(7): 619-622. |
[40] |
Patruno S, Hampson G J, Jackson C A L, et al. Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand-rich subaqueous delta: Jurassic Sognefjord Formation, offshore Norway[J]. Sedimentology, 2015, 62(1): 350-388. |
[41] |
Leeder M R, Seger M J, Stark C P. Sedimentation and tectonic geomorphology adjacent to major active and inactive normal faults, southern Greece[J]. Journal of the Geological Society, 1991, 148(2): 331-343. |
[42] |
Burgess P M, Hovius N. Rates of delta progradation during highstands: Consequences for timing of deposition in deep-marine systems[J]. Journal of the Geological Society, 1998, 155(2): 217-222. |
[43] |
Allen P A, Densmore A L. Sediment flux from an uplifting fault block[J]. Basin Research, 2000, 12(3/4): 367-380. |
[44] |
Allen P A. Time scales of tectonic landscapes and their sediment routing systems[C]//Gallagher K, Jones S J, Wainwright J eds. In Landscape evolution: Denudation, climate and tectonics over different time and space scales. Geological Society of London Special Publication 296, London: Geological Society, 2008: 7-28. |
[45] |
Métivier F, Gaudemer Y. Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: Implications on floodplain processes[J]. Basin Research, 1999, 11(4): 293-303. |
[46] |
Leeder M R, Harris T, Kirkby M J. Sediment supply and climate change: Implications for basin stratigraphy[J]. Basin Research, 1998, 10(1): 7-18. |
[47] |
Vandenberghe J. The relation between climate and river processes, landforms and deposits during the Quaternary[J]. Quaternary International, 2002, 91(1): 17-23. |
[48] |
Goodbred S L. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade[J]. Sedimentary Geology, 2003, 162(1/2): 83-104. |
[49] |
Covault J A, Graham S A. Submarine fans at all sea-level stands: Tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea[J]. Geology, 2010, 38(10): 939-942. |
[50] |
杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.
Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921. |
[51] |
Lambeck K, Chappell J. Sea level change through the last glacial cycle[J]. Science, 2001, 292(5517): 679-686. |
[52] |
Nyberg B, Helland-Hansen W, Gawthorpe R L, et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J]. Sedimentary Geology, 2018, 373: 111-133. |
[53] |
Xu S H, Han J H, Wang Y M, et al. How much systems-tract scale, three-dimensional stratigraphic variability is present in sequence stratigraphy?: An answer from the Middle Miocene Pearl River Mouth Basin[J]. AAPG Bulletin, 2020, 104(6): 1261-1285. |
[54] |
Zhu X M, Li S L, Liu Q H, et al. Source to sink studies between the Shaleitian uplift and surrounding sags: Perspectives on the importance of hinterland relief and catchment area for sediment budget, western Bohai Bay Basin, China[J]. Interpretation, 2017, 5(4): ST65-ST84. |
[55] |
徐长贵,杜晓峰,朱红涛. 陆相断陷盆地源汇系统控砂原理与应用[M]. 北京:科学出版社,2020:1-233.
Xu Changgui, Du Xiaofeng, Zhu Hongtao. Principle and application of source- sink system for sand control in continental faulted basins[M]. Beijing: Science Press, 2020: 1-233. |
[56] |
Allen M B, Macdonald D I M, Zhao X, et al. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7/8): 95l-972. |
[57] |
刘强虎,朱筱敏,李顺利,等. 沙垒田凸起前古近系基岩分布及源—汇过程[J]. 地球科学,2016,41(11):1935-1949.
Liu Qianghu, Zhu Xiaomin, Li Shunli, et al. Pre-Palaeogene bedrock distribution and source-to-sink system analysis in the Shaleitian uplift[J]. Earth Science, 2016, 41(11): 1935-1949. |
[58] |
Liu Q H, Zhu H T, Zhu X M, et al. Proportional relationship between the flux of catchment-fluvial segment and their sedimentary response to diverse bedrock types in subtropical lacustrine rift basins[J]. Marine and Petroleum Geology, 2019, 107: 351-364. |
[59] |
Liu Q H, Zhu X M, Zeng H L, et al. Source-to-sink analysis in an Eocene rifted lacustrine basin margin of western Shaleitian uplift area, offshore Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2019, 107: 41-58. |
[60] |
吴伟. 利用孢粉信息反演辽东湾古近纪气候变化[J]. 西南石油大学学报(自然科学版),2010,32(6):11-15.
Wu Wei. Inverse palaeoclimate of Paleogene in Liao-dong Bay Depression by using palynological data[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(6): 11-15. |
[61] |
Eisma D,孙顺才, Song X,等. 云南洱海现代沉积研究[J]. 湖泊科学,2000,12(1):25-37.
Eisma D, Sun S C, Song X, et al. Sedimentation in Erhai Lake, Yunnan province, China[J]. Journal of Lake Sciences, 2000, 12(1): 25-37. |
[62] |
Okwara I C, Hampson G J, Whittaker A C, et al. Source-to-sink mass-balance analysis of an ancient wave-influenced sediment routing system: Middle Jurassic Brent Delta, northern North Sea, offshore UK and Norway[J]. Basin Research, 2023, 35(4): 1555-1589. |
[63] |
朱筱敏,陈贺贺,谈明轩,等. 从太平洋到喜马拉雅的沉积学新航程:21届国际沉积学大会研究热点分析[J]. 沉积学报,2023,41(1):126-149.
Zhu Xiaomin, Chen Hehe, Tan Mingxuan, et al. A new journey in sedimentology from the Pacific to the Himalayas: Analysis of research hotpots from the 21st International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2023, 41(1): 126-149. |