[1] |
薛良清. 层序地层学研究现状、方法与前景[J]. 石油勘探与开发,1995,22(5):8-13.
Xue Liangqing. Current status, methodology, and future directions of sequence siratigraphy study[J]. Petroleum Exploration and Development, 1995, 22(5): 8-13. |
[2] |
Sloss L L, Krumbein W C, Dapples E C. Integrated facies analysis[M]//Longwell C. Sedimentary facies in geologichistory. Indiana: Geological Society of America, 1949: 91-124. |
[3] |
Mitchum R M, Vail P R, Thompson III S. Seismic stratigraphy and global changes of sea level, Part 2: The depositional sequence as a basic unit for stratigraphic analysis[M]//Payton C E. Seismic stratigraphy — applications to hydrocarbon exploration. Oklahoma: American Association of Petroleum Geologists, 1977: 53-62. |
[4] |
Vail P R, Mitchum R M, Thompson III S. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap[M]//Payton C E. Seismic stratigraphy — applications to hydrocarbon exploration. Oklahoma: American Association of Petroleum Geologists, 1977: 63-81. |
[5] |
Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167. |
[6] |
van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988: 39-45. |
[7] |
侯明才,陈洪德,田景春. 层序地层学的研究进展[J]. 矿物岩石,2001,21(3):128-134.
Hou Mingcai, Chen Hongde, Tian Jingchun. The progress of sequence stratigraphy[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 128-134. |
[8] |
庞雄,陈长民,彭大钧,等. 南海珠江深水扇系统的层序地层学研究[J]. 地学前缘,2007,14(1):220-229.
Pang Xiong, Chen Changmin, Peng Dajun, et al. Sequence stratigraphy of Pearl River deep-water fan system in the South China Sea[J]. Earth Science Frontiers, 2007, 14(1): 220-229. |
[9] |
林畅松. 沉积盆地的层序和沉积充填结构及过程响应[J]. 沉积学报,2009,27(5):849-862.
Lin Changsong. Sequence and depositional architecture of sedimentary basin and process responses[J]. Acta Sedimentologica Sinica, 2009, 27(5): 849-862. |
[10] |
姜在兴. 沉积体系及层序地层学研究现状及发展趋势[J]. 石油与天然气地质,2010,31(5):535-541.
Jiang Zaixing. Studies of depositional systems and sequence stratigraphy: The present and the future[J]. Oil & Gas Geology, 2010, 31(5): 535-541. |
[11] |
姜在兴. 层序地层学研究进展:国际层序地层学研讨会综述[J]. 地学前缘,2012,19(1):1-9.
Jiang Zaixing. Advances in sequence stratigraphy: A summary from International Workshop on Sequence Stratigraphy[J]. Earth Science Frontiers, 2012, 19(1): 1-9. |
[12] |
秦雁群,计智锋,万仑坤,等. 海相深水碎屑岩层序地层学理论进展及关键问题[J]. 石油与天然气地质,2017,38(1):12-21.
Qin Yanqun, Ji Zhifeng, Wan Lunkun, et al. Theory progress and key issues of deep water marine clastic sequence stratigraphy[J]. Oil & Gas Geology, 2017, 38(1): 12-21. |
[13] |
Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1/2): 1-33. |
[14] |
Worsley T R, Nance D, Moody J B. Global tectonics and eustasy for the past 2 billion years[J]. Marine Geology, 1984, 58(3/4): 373-400. |
[15] |
Takashima R, Nishi H, Huber B T, et al. Greenhouse world and the Mesozoic ocean[J]. Oceanography, 2006, 19(4): 82-92. |
[16] |
Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29. |
[17] |
Posamentier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition I — conceptual framework[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988. |
[18] |
van Wagoner J C, Mitchum R M, Campion K M, et al. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and facies[M]. Tulsa: Special Publications of AAPG, 1990. |
[19] |
Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level’fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9. |
[20] |
Hampson G J, Rodriguez A, Storms J, et al. Geomorphology and high-resolution stratigraphy of progradational wave-dominated shoreline deposits: Impact on reservoir-scale facies architecture[M]//Hampson G J, Steel R J, Burgess P M, et al. Recent advances in models of siliciclastic shallow-marine stratigraphy. Grand Junction: SEPM Society for Sedimentary Geology, 2008: 1-24. |
[21] |
Sweet M L, Blum M D. Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deep water[J]. Journal of Sedimentary Research, 2016, 86(10): 1147-1162. |
[22] |
Miall A D. Eustatic sea level changes interpreted from seismic stratigraphy: A critique of the methodology with particular reference to the North Sea Jurassic record[J]. AAPG Bulletin, 1986, 70(2): 485. |
[23] |
Miall A D. Exxon global cycle chart: An event for every occasion?[J]. Geology, 1992, 20(9): 787-790. |
[24] |
Hubbard J R. Age and significance of sequence boundaries on Jurassic and Early Cretaceous rifted continental margins[J]. AAPG Bulletin, 1988, 72(1): 49-72. |
[25] |
Helland-Hansen W, Gjelberg J G. Conceptual basis and variability in sequence stratigraphy: A different perspective[J]. Sedimentary Geology, 1994, 92(1/2): 31-52. |
[26] |
Burgess P M. The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension[J]. Geology, 2016, 44(4): 335-336. |
[27] |
Zhang J Y, Burgess P M, Granjeon D, et al. Can sediment supply variations create sequences? Insights from stratigraphic forward modelling[J]. Basin Research, 2019, 31(2): 274-289. |
[28] |
Xu S H, Han J H, Wang Y M, et al. How much systems-tract scale, three-dimensional stratigraphic variability is present in sequence stratigraphy?: An answer from the Middle Miocene Pearl River Mouth Basin[J]. AAPG Bulletin, 2020, 104(6): 1261-1285. |
[29] |
李宝庆. 现行层序模型及其标准化[J]. 石油实验地质,2015,37(2):134-140.
Li Baoqing. Current models and standardization of sequence stratigraphy[J]. Petroleum Geology & Experiment, 2015, 37(2): 134-140. |
[30] |
Galloway W E. Genetic stratigraphic sequences in Basin analysis I: Architecture and genesis of flooding-surface bounded depositional units[J]. AAPG Bulletin, 1989, 73(2): 125-142. |
[31] |
Frazier D E. Depositional-episodes: Their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin[R]. Austin: University of Texas at Austin, Bureau of Economic Geology, 1974. |
[32] |
Embry A F. Depostional sequence-theoretical considerations, boundary recognition and relationships to other genetic units[M]//. Mork A. Sequence Stratigraphy Field Workshop. Trondheim: Continental Shelf Institute (IKU), 1990: 1-26. |
[33] |
Embry A F, Podruski J A. Third-order depositional sequences of the Mesozoic succession of Sverdrup Basin[M]//James D P, Leckie D A. Sequences, stratigraphy, sedimentology: Surface and subsurface. CSPG Special Publications, 1988, 15: 73-84. |
[34] |
Embry A F, Johannessen E P. T-R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic–Lower Jurassic succession, western Sverdrup Basin, Arctic Canada[J]. Calgary: Norwegian Petroleum Society Special Publications, 1993, 2: 121-146. |
[35] |
Steel R J, Clinforms Olsen T., clinoform trajectories and deepwater sands[M]//Armentrout J. Sequence-stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories. Tulsa: GCSSEPM Proceedings 22nd Annual Conference, 2002: 367-381. |
[36] |
Muto T, Steel R J. Retreat of the front in a prograding delta[J]. Geology, 1992, 20(11): 967-970. |
[37] |
Muto T, Steel R J. Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments[J]. Geology, 2004, 32(5): 401-404. |
[38] |
Muto T, Steel R J. The autostratigraphic view of responses of river deltas to external forcing: A review of the concepts[M]//Martinius A W, Ravnås R, Howell J A, et al. From depositional systems to sedimentary successions on the Norwegian continental margin. Hoboken: Wiley Blackwell, 2014: 139-148. |
[39] |
Helland-Hansen W, Martinsen O J. Shoreline trajectories and sequences: Description of variable depositional-dip scenarios[J]. Journal of Sedimentary Research, 1996, 66(4): 670-688. |
[40] |
张曼莉,林畅松,何敏,等. 珠江口盆地晚渐新世陆架边缘三角洲沉积层序结构及演化[J]. 石油与天然气地质,2019,40(4):875-885.
Zhang Manli, Lin Changsong, He Min, et al. Sequence architecture and evolution of shelf-margin deltaic systems of the Late Oligocene in Pearl River Mouth Basin[J]. Oil & Gas Geology, 2019, 40(4): 875-885. |
[41] |
张昕,林畅松,张忠涛,等. 珠江口盆地北部早—中中新世滨线迁移轨迹与沉积体系演化[J]. 东北石油大学学报,2020,44(1):99-111.
Zhang Xin, Lin Changsong, Zhang Zhongtao, et al. Shoreline trajectory and depositional evolution of Early-Mid Miocene succession in northern Pearl River Mouth Basin[J]. Journal of Northeast Petroleum University, 2020, 44(1): 99-111. |
[42] |
Hampson G J, Sixsmith P J, Kieft R L, et al. Quantitative analysis of net-transgressive shoreline trajectories and stratigraphic architectures: Mid-to-Late Jurassic of the North Sea rift Basin[J]. Basin Research, 2009, 21(5): 528-558. |
[43] |
Steel R J, Crabaugh J, Schellpeper M, et al. Deltas vs. rivers on the shelf edge: Their relative contributions to the growth of shelf-margins and Basin-floor fans (Barremian and Eocene, Spitsbergen)[M]//Weimer P. Deep-water reservoirs of the world. SEPM Society for Sedimentary Geology, 2000: 981-1009. |
[44] |
Steel R J, Carvajal C, Petter A L, et al. Shelf and shelf-margin growth in scenarios of rising and falling sea level[M]//Hampson G J, Steel R J, Burgess R M, et al. Recent advances in models of siliciclastic shallow-marine stratigraphy. Grand Junction: SEPM Society for Sedimentary Geology, 2008: 1-24. |
[45] |
Johannessen E P, Steel R J. Shelf-margin clinoforms and prediction of deepwater sands[J]. Basin Research, 2005, 17(4): 521-550. |
[46] |
Gong C L, Steel R J, Wang Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101. |
[47] |
Gong C L, Steel R J, Wang Y M, et al. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater[J]. Earth-Science Reviews, 2016, 157: 32-60. |
[48] |
Carvajal C R, Steel R J. Thick turbidite successions from supply-dominated shelves during sea-level highstand[J]. Geology, 2006, 34(8): 665-668. |
[49] |
Flood R D, Piper D J W. Amazon Fan sedimentation: The relationship to equatorial climate change, continental denudation, and sea-level fluctuations[M]//Flood R D, Piper D J W, Klaus A, et al. Proceedings of the ocean drilling program, scientific results. College Station, Texas: Ocean Drilling Program, 1997, 653-675. |
[50] |
Carvajal C, Steel R, Petter A. Sediment supply: The main driver of shelf-margin growth[J]. Earth-Science Review, 2009, 96(4): 221-248. |
[51] |
Burgess P M, Allen P A, Steel R J. Introduction to the future of sequence stratigraphy: Evolution or revolution?[J]. Journal of the Geological Society, 2016, 173(5): 801-802. |
[52] |
Covault J A, Normark W R, Romans B W, et al. Highstand fans in the California borderland: The overlooked deep-water depositional systems[J]. Geology, 2007, 35(9): 783-786. |
[53] |
Bernhardt A, Schwanghart W, Hebbeln D, et al. Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin[J]. Earth and Planetary Science Letters, 2017, 473: 190-204. |
[54] |
Sequeiros O E, Pittaluga M B, Frascati A, et al. How typhoons trigger turbidity currents in submarine canyons[J]. Scientific Reports, 2019, 9: 9220. |
[55] |
龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252.
Gong Chenglin, Qi Kun, Xu Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. |
[56] |
徐少华,王英民,何敏,等. 珠江口盆地陆坡类型及其对深水储层的控制[J]. 中国矿业大学学报,2016,45(5):982-992.
Xu Shaohua, Wang Yingmin, He Min, et al. Slope types and their controlling effects on deep-water reservoir in the Pearl River Mouth Basin[J]. Journal of China University of Mining & Technology, 2016, 45(5): 982-992. |
[57] |
陈亮,冯轩,韩晋阳,等. 白云凹陷SQ13.8层序细粒深水扇沉积模式[J]. 中国海上油气,2020,32(5):36-43.
Chen Liang, Feng Xuan, Han Jinyang, et al. Deep-water fine-grained fan sedimentary model of SQ13.8 sequence in the Baiyun Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2020, 32(5): 36-43. |
[58] |
张忠涛,张向涛,孙辉,等. 珠江口盆地渐新世陆架边缘三角洲沉积特征及其对成藏的控制作用[J]. 石油学报,2019,40(增刊1):81-89.
Zhang Zhongtao, Zhang Xiangtao, Sun Hui, et al. Sedimentary characteristics of Oligocene shelf edge delta and their control on hydrocarbon accumulation in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(Suppl.1): 81-89. |
[59] |
庞雄. 深水重力流沉积的层序地层结构与控制因素:南海北部白云深水区重力流沉积层序地层学研究思路[J]. 中国海上油气,2012,24(2):1-8.
Pang Xiong. Sequence stratigraphy configuration of deepwater gravity-flow sediments and its controls: A line of thinking in sequence stratigraphy of gravity-flow sediments in Baiyun deepwater area, the northern South China Sea[J]. China Offshore Oil and Gas, 2012, 24(2): 1-8. |
[60] |
柳保军,庞雄,颜承志,等. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义[J]. 石油学报,2011,32(2):234-242.
Liu Baojun, Pang Xiong, Yan Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration[J]. Acta Petrolei Sinica, 2011, 32(2): 234-242. |
[61] |
林畅松,施和生,李浩,等. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用[J]. 地球科学,2018,43(10):3407-3422.
Lin Changsong, Shi Hesheng, Li Hao, et al. Sequence architecture, depositional evolution and controlling processes of continental slope in Pearl River Mouth Basin, northern South China Sea[J]. Earth Science, 2018, 43(10): 3407-3422. |
[62] |
Fisher W L, Galloway W E, Steel R J, et al. Deep-water depositional systems supplied by shelf-incising submarine canyons: Recognition and significance in the geologic record[J]. Earth-Science Reviews, 2021, 214: 103531. |
[63] |
Gong C, Li D, Steel R J, et al. Delta-to-fan coupling as a fundamental control on source-to-sink delivery of coarse clastics to deepwater: Insights from stratigraphic forward modeling[J]. Basin Research, 2021, in press. |
[64] |
林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20.
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. |
[65] |
石学法,乔淑卿,杨守业,等. 亚洲大陆边缘沉积学研究进展(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):319-336.
Shi Xuefa, Qiao Shuqing, YangShouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2021,40(2):319-336. |
[66] |
邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.
Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(1): 67-81. |
[67] |
Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169. |
[68] |
Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. |
[69] |
Walsh J P, Wiberg P L, Aalto R, et al. Source-to-sink research: Economy of the Earth's surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6. |
[70] |
Paumard V, Bourget J, Payenberg T, et al. Controls on deep-water sand delivery beyond the shelf edge: Accommodation, sediment supply, and deltaic process regime[J]. Journal of Sedimentary Research, 2020, 90(1): 104-130. |
[71] |
Koo W M, Olariu C, Steel R J, et al. Coupling between shelf-edge architecture and submarine-fan growth style in a supply-dominated margin[J]. Journal of Sedimentary Research, 2016, 86(6): 613-628. |
[72] |
Gong C L, Sztanó O, Steel R J, et al. Critical differences in sediment delivery and partitioning between marine and lacustrine basins: A comparison of marine and lacustrine aggradational to progradational clinothem pairs[J]. GSA Bulletin, 2019, 131(5/6): 766-781. |
[73] |
Gong C L, Qi K, Ma Y, et al. Tight coupling between the cyclicity of deep-water systems and rising-then-flat shelf-edge pairs along the submarine segment of the Qiongdongnan sediment-routing system[J]. Journal of Sedimentary Research, 2019, 89(10): 956-975. |
[74] |
Pellegrini C, Maselli V, Gamberi F, et al. How to make a 350-m-thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge[J]. Geology, 2017, 45(4): 327-330. |
[75] |
吴和源. 朝向层序地层学标准化:层序地层学研究的一个重要科学命题[J]. 沉积学报,2017,35(3):425-435.
Wu Heyuan. Towards the standardization of sequence stratigraphy: An important scientific proposition of sequence stratigraphy[J]. Acta Sedimentologica Sinica, 2017, 35(3): 425-435. |
[76] |
Catuneanu O. Model-independent sequence stratigraphy[J]. Earth-Science Reviews, 2019, 188: 312-388. |
[77] |
Helland-Hansen W. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 94(1/2/3/4): 95-97. |
[78] |
Neal J, Abreu V. Sequence stratigraphy hierarchy and the accommodation succession method[J]. Geology, 2009, 37(9): 779-782. |
[79] |
Helland-Hansen W, Hampson G J. Trajectory analysis: Concepts and applications[J]. Basin Research, 2009, 21(5): 454-483. |
[80] |
Gong C L, Wang Y M, Pyles D R, et al. Shelf-edge trajectories and stratal stacking patterns: Their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone[J]. AAPG Bulletin, 2015, 99(7): 1211-1243. |
[81] |
Gong C, Wang Y, Steel R J, et al. Growth styles of shelf-margin clinoforms: Prediction of sand- and sediment-budget partitioning into and across the shelf[J]. Journal of Sedimentary Research, 2015, 85(3): 209-229. |
[82] |
Laugier F J, Plink-Björklund P. Defining the shelf edge and the three-dimensional shelf edge to slope facies variability in shelf-edge deltas[J]. Sedimentology, 2016, 63(5): 1280-1320. |
[83] |
Madof A S, Harris A D, Connell S D. Nearshore along-strike variability: Is the concept of the systems tract unhinged?[J]. Geology, 2016, 44(4): 315-318. |
[84] |
徐少华,何敏,庞雄,等. 被动陆缘层序地层结构的侧向变化及其启示:以珠江口盆地中中新世13.8Ma为例[J]. 石油与天然气地质,2018,39(4):811-822.
Xu Shaohua, He Min, Pang Xiong, et al. Lateral variation of sequence stratigraphic architecture on passive continental margin and its enlightenment: A case from the Middle Miocene in Pearl River Mouth Basin in 13.8 Ma[J]. Oil & Gas Geology, 2018, 39(4): 811-822. |
[85] |
Martinsen O J, Helland-Hansen W. Strike variability of clastic depositional systems: Does it matter for sequence-stratigraphic analysis?[J]. Geology, 1995, 23(5): 439-442. |
[86] |
Schlager W. Accommodation and supply: A dual control on stratigraphic sequences[J]. Sedimentary Geology, 1993, 86(1/2): 111-136. |
[87] |
Yoshida S, Steel R J, Dalrymple R W. Changes in depositional processes: An ingredient in a new generation of sequence-stratigraphic models[J]. Journal of Sedimentary Research, 2007, 77(6): 447-460. |
[88] |
Dixon J F, Steel R J, Olariu C. Shelf-edge delta regime as a predictor of deep-water deposition[J]. Journal of Sedimentary Research, 2012, 82(9): 681-687. |