[1] Mann M E, Zhang Z H, Rutherford S, et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly[J]. Science, 2009, 326(5957): 1256-1260.
[2] Matthes F E. Report of committee on glaciers, April 1939[J]. Eos, Transactions American Geophysical Union, 1939, 20(4): 518-523.
[3] 郑景云,刘洋,郝志新,等. 过去2000年气候变化的全球集成研究进展与展望[J]. 第四纪研究,2021,41(2):309-322.

Zheng Jingyun, Liu Yang, Hao Zhixin, et al. State-of-art and perspective on global synthesis studies of climate change for the past 2000 years[J]. Quaternary Sciences, 2021, 41(2): 309-322.
[4] 高建慧,刘健,王苏民. 中国中世纪暖期气候研究综述[J]. 地理科学,2006,26(3):376-383.

Gao Jianhui, Liu Jian, Wang Sumin. Overview on studies of Medieval Warm Period in China[J]. Scientia Geographica Sinica, 2006, 26(3): 376-383.
[5] 郑景云,刘洋,吴茂炜,等. 中国中世纪气候异常期温度的多尺度变化特征及区域差异[J]. 地理学报,2019,74(7):1281-1291.

Zheng Jingyun, Liu Yang, Wu Maowei, et al. Evidences and regional differences on multi-scales in Medieval Climate Anomaly over China[J]. Acta Geographica Sinica, 2019, 74(7): 1281-1291.
[6] 黄博津,余克服,陈特固. 过去2000年的特征气候时段及其影响因素[J]. 海洋地质与第四纪地质,2013,33(1):97-108.

Huang Bojin, Yu Kefu, Chen Tegu. Recent progress on specific climatic stages and driving forces over last 2000 years[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 97-108.
[7] Wang Q, Cheng K, Zheng Z H, et al. Relationship between climate, environment, and anthropogenic activities in coastal North China recorded by speleothem δ18O and δ13C ratios in the last 1 ka[J]. Climate of the Past Discussions, 2017: 1-25.
[8] Lan J H, Xu H, Lang Y C, et al. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age[J]. Geology, 2020, 48(4): 307-312.
[9] Wang X H, Wang L S, Hu S Y, et al. Indian summer monsoon variability over last 2000 years inferred from sediment magnetic characteristics in Lugu Lake, Southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 578: 110581.
[10] Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322(5903): 940-942.
[11] 陈朝军,袁道先,程海,等. 人类活动和气候变化触发了中国西南石漠化的扩张[J]. 中国科学(D辑):地球科学,2021,51(11):1950-1963.

Chen Chaojun, Yuan Daoxian, Cheng Hai, et al. Human activity and climate change triggered the expansion of rocky desertification in the karst areas of southwestern China[J]. Science China (Seri. D): Earth Sciences, 2021, 51(11): 1950-1963.
[12] Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
[13] Zhang J W, Zhao K, Wang Y J, et al. Modulation of centennial-scale hydroclimate variations in the middle Yangtze River valley by the East Asian-Pacific pattern and ENSO over the past two millennia[J]. Earth and Planetary Science Letters, 2021, 576: 117220.
[14] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 221-232.
[15] Emile-Geay J, Cane M, Seager R, et al. El Niño as a mediator of the solar influence on climate[J]. Paleoceanography, 2007, 22(3): PA3210.
[16] Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26(1/2): 170-188.
[17] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[18] Liu D B, Wang Y J, Cheng H, et al. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China[J]. Quaternary Research, 2016, 85(3): 333-346.
[19] Chen C J, Huang R, Yuan D X, et al. Karst hydrological changes during the Late-Holocene in southwestern China[J]. Quaternary Science Reviews, 2021, 258: 106865.
[20] Jia W, Zhang P Z, Zhang L L, et al. Highly resolved δ13C and trace element ratios of precisely dated stalagmite from northwestern China: Hydroclimate reconstruction during the last two millennia[J]. Quaternary Science Reviews, 2022, 291: 107473.
[21] 白雨洁,吴江滢,梁怡佳,等. 湖北玉龙洞石笋多指标记录的4.2 ka事件[J]. 第四纪研究,2020,40(4):959-972.

Bai Yujie, Wu Jiangying, Liang Yijia, et al. The multi-proxy record of a stalagmite from Yulong cave, Hubei during the 4.2 ka event[J]. Quaternary Sciences, 2020, 40(4): 959-972.
[22] Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the Lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275.
[23] Zhao K, Wang Y J, Edwards R L, et al. Contribution of ENSO variability to the East Asian summer monsoon in the Late Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 510-519.
[24] Cui Y F, Wang Y J, Cheng H, et al. Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA Period from Heilong cave, central China[J]. Climate of the Past, 2012, 8(5): 1541-1550.
[25] 何报寅,张穗,蔡述明. 近2600年神农架大九湖泥炭的气候变化记录[J]. 海洋地质与第四纪地质,2003,23(2):109-115.

He Baoyin, Zhang Sui, Cai Shuming. Climatic changes recorded in peat from the Dajiu lake basin in Shennongjia since the last 2600 years[J]. Marine Geology & Quaternary Geology, 2003, 23(2): 109-115.
[26] 张伟宏,陈仕涛,汪永进,等. 小冰期东亚夏季风快速变化特征:湖北石笋记录[J]. 第四纪研究,2019,39(3):765-774.

Zhang Weihong, Chen Shitao, Wang Yongjin, et al. Rapid change in the East Asian summer monsoon: Stalagmite records in Hubei, China[J]. Quaternary Sciences, 2019, 39(3): 765-774.
[27] 陈剑舜,张伟宏,陈仕涛,等. 小冰期气候的湖北石笋碳同位素记录[J]. 沉积学报,2020,38(3):497-504.

Chen Jianshun, Zhang Weihong, Chen Shitao, et al. Carbon isotope record in stalagmites from Hubei during the Little Ice Age[J]. Acta Sedimentologica Sinica, 2020, 38(3): 497-504.
[28] Duan F C, Zhang Z Q, Wang Y, et al. Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans[J]. Climate of the Past, 2020, 16(2): 475-485.
[29] Wang Q, Wang Y J, Zhao K, et al. The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing cave, central China[J]. Environmental Earth Sciences, 2018, 77(12): 474.
[30] 张伟宏,廖泽波, 陈仕涛,等. 湖北高分辨率石笋记录的DO18事件特征[J]. 沉积学报,2018,36(4):674-683.

Zhang Weihong, Liao Zebo, Chen Shitao, et al. DO18 event depicted by a high-resolution stalagmite record from Yongxing cave, Hubei province[J]. Acta Sedimentologica Sinica, 2018, 36(4): 674-683.
[31] Chen S T, Wang Y J, Cheng H, et al. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales[J]. Scientific Reports, 2016, 6: 32995.
[32] Cheng H, Sinha A, Wang X F, et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062.
[33] Hercman H, Pawlak J. MOD-AGE: An age-depth model construction algorithm[J]. Quaternary Geochronology, 2012, 12: 1-10.
[34] Fohlmeister J. A statistical approach to construct composite climate records of dated archives[J]. Quaternary Geochronology, 2012, 14: 48-56.
[35] Mudelsee M. Ramp function regression: A tool for quantifying climate transitions[J]. Computers & Geosciences, 2000, 26(3): 293-307.
[36] Li Y D, Yang Y, Jiang X Y, et al. The transport mechanism of carbon isotopes based on 10 years of cave monitoring: Implications for paleoclimate reconstruction[J]. Journal of Hydrology, 2021, 592: 125841.
[37] Baker A J, Mattey D P, Baldini J U L. Reconstructing modern stalagmite growth from cave monitoring, local meteorology, and experimental measurements of dripwater films[J]. Earth and Planetary Science Letters, 2014, 392: 239-249.
[38] 孔兴功,汪永进,吴江滢. 南京葫芦洞石笋δ13C对冰期气候的复杂响应与诊断[J]. 中国科学(D辑):地球科学,2005,35(11):1047-1052.

Kong Xinggong, Wang Yongjin, Wu Jiangying, et al. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu cave, Nanjing, China[J]. Science China (Seri. D): Earth Sciences, 2005, 35(11): 1047-1052.
[39] Liang Y J, Zhao K, Wang Y J, et al. Different response of stalagmite δ18O and δ13C to millennial-scale events during the last glacial, evidenced from Huangjin cave, northern China[J]. Quaternary Science Reviews, 2022, 276: 107305.
[40] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 105-153.
[41] Wang Z J, Chen S T, Wang Y J, et al. Climatic implication of stalagmite δ13C in the middle reaches of the Yangtze River since the Last Glacial Maximum and coupling with δ18O[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 608: 111290.
[42] Johnson K R, Hu C Y, Belshaw N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2006, 244(1/2): 394-407.
[43] Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6925): 833-837.
[44] 郜魁,何尧启,邱万银,等. 贵州黑洞4750年以来高分辨率石笋δ13C记录[J/OL]. 沉积学报,doi:  10.14027/j.issn.1000-0550.2022.068.

Gao Kui, He Yaoqi, Qiu Wanyin, et al. A high-resolution stalagmite δ13C record for the past 4 750 years from Dark cave, Guizhou, SW China[J/OL]. Acta Sedimentologica Sinica, doi:  10.14027/j.issn.1000-0550.2022.068.
[45] 中央气象局气象科学研究院. 中国近五百年旱涝分布图集[M]. 北京:地图出版社,1981.

Chinese Academy of Meteorological Science CMA. Yearly charts of dryness/wetness in China for the last 500-year period[M]. Beijing: China Cartographic Publishing House, 1981.
[46] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义:古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862.

Tang Ming. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.
[47] Zhang H W, Zhang X, Cai Y J, et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon[J]. Quaternary Science Reviews, 2021, 261: 106911.
[48] Zhang H W, Cai Y J, Tan L C, et al. Large variations of δ13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3): 511-525.
[49] Zhao M, Li H C, Shen C C, et al. δ18O, δ13C, elemental content and depositional features of a stalagmite from Yelang cave reflecting climate and vegetation changes since Late Pleistocene in central Guizhou, China[J]. Quaternary International, 2017, 452: 102-115.
[50] Zhao J Y, Cheng H, Yang Y, et al. Role of the summer monsoon variability in the collapse of the Ming Dynasty: Evidences from speleothem records[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093071.
[51] 薛莲花,赵侃,崔英方,等. 近2000年来东亚夏季风突变的落水洞高分辨率石笋记录[J]. 第四纪研究,2020,40(4):973-984.

Xue Lianhua, Zhao Kan, Cui Yingfang, et al. Abrupt changes of East Asian summer monsoon over the past two millennia from stalagmite record in Luoshui cave, Hubei province[J]. Quaternary Sciences, 2020, 40(4): 973-984.
[52] Cosford J, Qing H R, Mattey D, et al. Climatic and local effects on stalagmite δ13C values at Lianhua cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1/2): 235-244.
[53] Shi F, Lu H Y, Guo Z T, et al. The position of the Current Warm Period in the context of the past 22,000 years of summer climate in China[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091940.
[54] 邓云凯,李亮,马春梅,等. 江西玉华山泥炭2000 a BP以来的元素地球化学记录及其气候意义[J]. 地层学杂志,2019,43(4):352-363.

Deng Yunkai, Li Liang, Ma Chunmei, et al. The geochemical records and paleoclimate significance in peat from the Yuhua mountain in Jiangxi province since the last two millennia[J]. Journal of Stratigraphy, 2019, 43(4): 352-363.
[55] He F N, Yang F, Zhao C S, et al. Spatially explicit reconstruction of cropland cover for China over the past millennium[J]. Science China (Seri. D): Earth Sciences, 2023, 66(1): 111-128.
[56] Xiao X Y, Yang X D, Shen J, et al. Vegetation history and dynamics in the middle reach of the Yangtze River during the last 1500 years revealed by sedimentary records from Taibai lake, China[J]. The Holocene, 2013, 23(1): 57-67.
[57] Gu Y S, Wang H L, Huang X Y, et al. Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China[J]. Frontiers of Earth Science, 2012, 6(1): 10-17.
[58] Tan L C, Cai Y J, An Z S, et al. Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye cave[J]. The Holocene, 2011, 21(2): 287-296.
[59] 张愈,马春梅,赵宁,等. 浙江天目山千亩田泥炭晚全新世以来Rb/Sr记录的干湿变化[J]. 地层学杂志,2015,39(1):97-107.

Zhang Yu, Ma Chunmei, Zhao Ning, et al. Late Holocene Rb/Sr ratios as a paleoclimate proxy in the Qianmutian peat of Tianmu mountains, Zhejiang province[J]. Journal of Stratigraphy, 2015, 39(1): 97-107.
[60] Moberg A, Sonechkin D M, Holmgren K, et al. Highly variable northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data[J]. Nature, 2005, 433(7026): 613-617.
[61] Ma C M, Zhu C, Zheng C G, et al. High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shennongjia mountains, central China[J]. Chinese Science Bulletin, 2008, 53(Suppl.1): 28-41.
[62] 李美娇,何凡能,杨帆,等. 明代省域耕地数量重建及时空特征分析[J]. 地理研究,2020,39(2):447-460.

Li Meijiao, He Fanneng, Yang Fan, et al. Reconstruction of provincial cropland area and its spatial-temporal characteristics in the Ming Dynasty[J]. Geographical Research, 2020, 39(2): 447-460.
[63] Sha L B, Jiang H, Seidenkrantz M S, et al. Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium[J]. Quaternary Science Reviews, 2016, 131: 148-156.
[64] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549): 2130-2136.
[65] Zhang Z Q, Liang Y J, Wang Y J, et al. Evidence of ENSO signals in a stalagmite-based Asian monsoon record during the Medieval Warm Period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110714.
[66] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19): L19704.
[67] Shi F, Yang B, von Gunten L. Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium[J]. Science China: Earth Sciences, 2012, 55(12): 2058-2067.
[68] Tan L C, Shen C C, Löwemark L, et al. Rainfall variations in central Indo-Pacific over the past 2,700 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17201-17206.
[69] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/southern oscillation activity at millennial timescales during the Holocene Epoch[J]. Nature, 2002, 420(6912): 162-165.
[70] Suess H E. The radiocarbon record in tree rings of the last 8000 years[J]. Radiocarbon, 1980, 22(2): 200-209.
[71] Feng X X, Yang Y, Cheng H, et al. The 7.2 ka climate event: Evidence from high-resolution stable isotopes and trace element records of stalagmite in Shuiming cave, Chongqing, China[J]. The Holocene, 2020, 30(1): 145-154.
[72] Chiang J C H, Bitz C M. Influence of high latitude ice cover on the marine intertropical convergence zone[J]. Climate dynamics, 2005, 25(5): 477-496.
[73] Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate dynamics, 2014, 42(3/4): 1067-1077.
[74] Yan H, Sun L G, Wang Y H, et al. A record of the southern oscillation index for the past 2,000 years from precipitation proxies[J]. Nature Geoscience, 2011, 4(9): 611-614.
[75] Renssen H, Goosse H, Muscheler R. Coupled climate model simulation of Holocene cooling events: Oceanic feedback amplifies solar forcing[J]. Climate of the Past, 2006, 2(2): 79-90.