[1] 胡雪峰,龚子同,夏应菲,等. 安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J]. 土壤学报,1999,36(3):301-307.

Hu Xuefeng, Gong Zitong, Xia Yingfei, et al. Comparative study of yellow-brown earth and Quaternary red clay in Xuanzhou, Anhui province and its palaeo-climate significance[J]. Acta Pedologica Sinica, 1999, 36(3): 301-307.
[2] 尹秋珍,郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报,2006,51(2):186-193.

Yin Qiuzhen, Guo Zhengtang. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2): 186-193.
[3] Yaro D T, Kparmwang T, Raji B A, et al. Extractable micronutrients status of soils in a plinthitic landscape at Zaria, Nigeria[J]. Communications in Soil Science and Plant Analysis, 2008, 39(15/16): 2484-2499.
[4] 张智,凌超豪,贾玉连,等. 多重理化指标揭示的中国南方更新世网纹红土网纹化机制[J]. 地层学杂志,2020,44(1):95-103.

Zhang Zhi, Ling Chaohao, Jia Yulian, et al. Multi-physico chemical evidences for formation of Pleistocene reticulated soil and its environmental implication in South China[J]. Journal of Stratigraphy, 2020, 44(1): 95-103.
[5] 来红州,莫多闻,李新坡. 洞庭盆地红土地层中网纹的成因探讨[J]. 北京大学学报(自然科学版),2005,41(2):240-248.

Lai Hongzhou, Mo Duowen, Li Xinpo. Genesis of reticulate clay in the laterite of the Dongting Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(2): 240-248.
[6] 徐传奇,廖富强,贾玉连,等. 中国南方网纹红土元素地球化学特征及其对网纹化过程的指示意义[J]. 古地理学报,2016,18(5):865-878.

Xu Chuanqi, Liao Fuqiang, Jia Yulian, et al. Element geochemical characteristics of the reticulate red clay in southern China and its significance for the formation proccess of reticulated mottles[J]. Journal of Palaeogeography, 2016, 18(5): 865-878.
[7] 袁双. 网纹红土铁形态特征与网纹红土形成环境[D]. 金华:浙江师范大学,2010:24-62.

Yuan Shuang. Iron features and formation environment of vermicular red earth[D]. Jinhua: Zhejiang Normal University, 2010: 24-62.
[8] 李凤全,叶玮,王天阳,等. 网纹红土红色基质与白色条纹铁迁移模型[J]. 第四纪研究,2018,38(2):306-313.

Li Fengquan, Ye Wei, Wang Tianyang, et al. The model for iron migration between white reticulated mottles and red matrix[J]. Quaternary Sciences, 2018, 38(2): 306-313.
[9] 张晓,朱丽东,黄颖,等. 加积型网纹红土网纹化机制及形成环境[J]. 第四纪研究,2020,40(1):214-228.

Zhang Xiao, Zhu Lidong, Huang Ying, et al. The reticulated mechanism and its climatic implication of aggradation red earth[J]. Quaternary Sciences, 2020, 40(1): 214-228.
[10] 李驭亚. 华南第四纪网状红土虫状白斑的成因探讨[J]. 地质论评,1965,23(2):144-145.

Li Yuya. On the origin of the white vermicular spots of the Quaternary reticulated red clay in South China[J]. Geological Review, 1965, 23(2): 144-145.
[11] 朱景郊. 网纹红土的成因及其研究意义[J]. 地理研究,1988,7(4):12-20.

Zhu Jingjiao. Genesis and research significance of the plinthitic horizon[J]. Geographical Research, 1988, 7(4): 12-20.
[12] 熊尚发,丁仲礼,刘东生. 南方红土网纹:古森林植物根系的土壤学证据[J]. 科学通报,2000,45(12):1317-1321.

Xiong Shangfa, Ding Zhongli, Liu Dongsheng. The worm-shaped veins in the red earth of South China:Pedological evidence for root traces of past forest[J]. Chinese Science Bulletin, 2000, 45(12): 1317-1321.
[13] Hu X F, Zhao J L, Zhang P F, et al. Fe isotopic composition of the Quaternary Red Clay in subtropical Southeast China: Redoxic Fe mobility and its paleoenvironmental implications[J]. Chemical Geology, 2019, 524: 356-367.
[14] 王琳怡,朱丽东,于红梅,等. 加积型红土剖面成壤特征及网纹化成因的土壤微形态证据[J]. 土壤学报,2022,59(5):1306-1320.

Wang Linyi, Zhu Lidong, Yu Hongmei, et al. Micromorphological evidence on the pedogenic characteristics and reticulated mechanism of aggradation red earth[J]. Acta Pedologica Sinica, 2022, 59(5): 1306-1320.
[15] 王松,高钰涯,王军,等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报,2021,42(5):641-655.

Wang Song, Gao Yuya, Wang Jun, et al. Recent progress of reference materials for in-situ elemental and isotopic microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641-655.
[16] 张启燕,刘晓,杨玠,等. 微区X射线荧光成像技术在岩心分析中的应用[J]. 光谱学与光谱分析,2022,42(7):2200-2206.

Zhang Qiyan, Liu Xiao, Yang Jie, et al. Application of micro X-Ray fluorescence imaging technology in core analysis[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2200-2206.
[17] 朱碧,朱志勇,吕苗,等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试,2017,36(1):14-21.

Zhu Bi, Zhu Zhiyong Lü Miao, et al. Application of iolite in data reduction of laser ablation-inductively coupled plasma-mass spectrometry line-scan analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21.
[18] Rosolen V, Lamotte M, Boulet R, et al. Genesis of a mottled horizon by Fe-depletion within a laterite cover in the Amazon Basin[J]. Comptes Rendus Geoscience, 2002, 334(3): 187-195.
[19] 张伟,周夏青,孙聪聪,等. 矿物微区原位分析与同位素地球化学分析技术在地学中的应用[J]. 山东国土资源,2019,35(10):38-44.

Zhang Wei, Zhou Xiaqing, Sun Congcong, et al. Application of in-situ mineral microanalysis technology and isotope geochemical analysis technology in geology[J]. Shangdong Land and Resources, 2019, 35(10): 38-44.
[20] 梁述廷,刘玉纯,刘瑱,等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试,2015,34(2):201-206.

Liang Shuting, Liu Yuchun, Liu Zhen, et al. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206.
[21] 梁述廷,刘玉纯,刘瑱,等. X射线荧光光谱微区分析在铅锌矿石鉴定上的应用[J]. 岩矿测试,2013,32(6):897-902.

Liang Shuting, Liu Yuchun, Liu Zhen, et al. Application of in-situ Micro-X-ray fluorescence spectrometry in the identification of lead-zinc ore[J]. Rock and Mineral Analysis, 2013, 32(6): 897-902.
[22] 安乐. R型因子分析在地球化学数据统计中的应用[J]. 甘肃科技,2017,33(16):46-48.

An Le. Application of R-factor analysis in geochemical data statistics[J]. Gansu Science and Technology, 2017, 33(16): 46-48.
[23] 王学仁. 地质数据的多变量统计分析[M]. 北京:科学出版社,1982:249-296.

Wang Xueren. Multivariable statistical analysis of geological data[M]. Beijing: Science Press, 1982: 249-296.
[24] 何其芬,尹维民,张秀文,等. R型因子分析和聚类分析在内蒙古伊山林场土壤地球化学测量中的应用[J]. 山东国土资源,2015,31(8):61-64.

He Qifen, Yin Weimin, Zhang Xiuwen, et al. Application of R type factor analysis and cluster analysis in soil geochemical survey at inner Mongolia of Yishan forest farm[J]. Shandong Land and Resources, 2015, 31(8): 61-64.
[25] 朱照宇,吴翼,邱世藩,等. 华南沿海第四纪类网纹红土的赋存层位及其年代问题[J]. 地球科学进展,2010,25(4):391-399.

Zhu Zhaoyu, Wu Yi, Qiu Shifan, et al. The problems of stratigraphy and chronology of like-vermicular red earth formed in the Quaternary along the coast of South China[J]. Advances in Earth Science, 2010, 25(4): 391-399.
[26] Hong H L, Churchman G J, Yin K, et al. Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China[J]. Geoderma, 2014, 214-215: 42-49.
[27] 汪玲玲,李凤全,吴开钦,等. 九江加积型红土网纹形态特征及其环境意义[J]. 沉积学报,2024,42(1):534-544.

Wang Lingling, Li Fengquan, Wu Kaiqin, et al. Reticulate morphologies and environmental significance of red earth aggradation in Jiujiang[J]. Acta Sedimentologica Sinica, 2024, 42(1): 534-544.
[28] 吴开钦,李凤全,王天阳,等. 浙江金华红土网纹成因的磁学证据[J]. 沉积学报,2023,41(3)706-719.

Wu Kaiqin, Li Fengquan, Wang Tianyang, et al. Magnetic characteristics evident in the formation of the reticulate structure of red paleosol in Jinhua, Zhejiang[J]. Acta Sedimentologica Sinica,2023,41(3)706-719.
[29] 毛龙江,莫多闻,杨兢红,等. 环洞庭湖地区网纹红土中稀土元素的地球化学特征[J]. 环境化学,2008,27(2):222-225.

Mao Longjiang, Mo Duowen, Yang Jinghong, et al. Rare earth element geochemistry of reticulate red clay around Dongting lake[J]. Environmental Chemistry, 2008, 27(2): 222-225.
[30] 叶玮,朱丽东,李凤全,等. 中国中亚热带网纹红土的地球化学特征与沉积环境[J]. 土壤学报,2008,45(3):385-391.

Ye Wei, Zhu Lidong, Li Fengquan, et al. Sedimentary environment of vermicular red earth in Mid-subtropical China[J]. Acta Pedologica Sinica, 2008, 45(3): 385-391.
[31] 朱丽东,周尚哲,叶玮,等. 网纹红土稀土元素地球化学特征的初步研究[J]. 中国沙漠,2007,27(2):194-200.

Zhu Lidong, Zhou Shangzhe, Ye Wei, et al. Preliminary study on geochemical behavior of rare earth element of plinthitic red earth in South China[J]. Journal of Desert Research, 2007, 27(2): 194-200.
[32] 朱丽东,周尚哲,李凤全,等. 金衢盆地TX红土剖面元素迁移特征[J]. 海洋地质与第四纪地质,2007,27(1):117-123.

Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. The elemental transport features of red earth from TX-section and its paleo-climatic implications[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 117-123.
[33] Hong H L, Gu Y S, Li R B, et al. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China[J]. Journal of Quaternary Science, 2010, 25(5): 662-674.
[34] 章明奎. 杭州市之江组网纹红土的矿物学特性[J]. 浙江大学学报(农业与生命科学版),2000,26(1):22-24.

Zhang Mingkui. Mineralogy of Zhijiang plinthitic red clay in Hangzhou city[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2000, 26(1): 22-24.
[35] 陈骏,季峻峰,仇纲,等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学:地球科学,1997,27(6):531-536.

Chen Jun, Ji Junfeng, Qiu Gang, et al. Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence, China[J]. Science China Earth Sciences, 1997, 27(6): 531-536.
[36] 赵晓蕊,吴华勇,张甘霖. 典型网纹红土结构土壤细菌群落及其生态网络特征[J]. 土壤,2022,54(5):986-992.

Zhao Xiaorui, Wu Huayong, Zhang Ganlin. Characteristics of bacterial communities and their co-occurrence networks in a typical plinthic horizon[J]. Soils, 2022, 54(5): 986-992.
[37] Lottermoser B G, Ashley P M, Lawie D C. Environmental geochemistry of the Gulf Creek copper mine area, northeastern New South Wales, Australia[J]. Environmental Geology, 1999, 39(1): 61-74.
[38] Pokrovsky O S, Schott J, Dupré B. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3239-3260.
[39] Marsh J S. REE fractionation and Ce anomalies in weathered Karoo dolerite[J]. Chemical Geology, 1991, 90(3/4): 189-194.
[40] Middelburg J J, Van Der Weijden C H, Woittiez J R W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks[J]. Chemical Geology, 1988, 68(3/4): 253-273.
[41] Ma J L, Wei G J, Xu Y G, et al. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3223-3237.
[42] Chen C M, Barcellos D, Richter D D, et al. Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity[J]. Journal of Soils and Sediments, 2019, 19(2): 785-797.