[1] Königer S, Lorenz V, Stollhofen H, et al. Origin, age and stratigraphic significance of distal fallout ash tuffs from the Carboniferous-Permian continental Saar-Nahe Basin (SW Germany)[J]. International Journal of Earth Sciences, 2002, 91(2): 341-356.
[2] He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 391-405.
[3] 王曼,钟玉婷,侯莹玲,等. 华南地区二叠纪—三叠纪界线酸性火山灰的源区与规模[J]. 岩石学报,2018,34(1):36-48.

Wang Man, Zhong Yuting, Hou Yingling, et al. Source and extent of the felsic volcanic ashes at the Permian-Triassic boundary in South China[J]. Acta Petrologica Sinica, 2018, 34(1): 36-48.
[4] 殷鸿福,黄思骥,张克信,等. 华南二叠纪—三叠纪之交的火山活动及其对生物绝灭的影响[J]. 地质学报,1989,63(2):169-180.

Yin Hongfu, Huang Siji, Zhang Kexin, et al. Volcanism at the Permian-Triassic boundary in South China and its effects on mass extinction[J]. Acta Geologica Sinica, 1989, 63(2): 169-180.
[5] 雒洋冰. 川东川南晚二叠世煤及凝灰岩中微量元素地球化学研究[D]. 北京:中国矿业大学(北京),2014.

Luo Yangbing. The study of trace elements geochemistry in Late Permian coal and tuff samples from east and south Sichuan province, China[D]. Beijing: China University of Mining and Technology(Beijing), 2014.
[6] 张晗. 四川广元晚二叠世凝灰岩地球化学特征及其地质意义[D]. 成都:成都理工大学,2020.

Zhang Han. Geochemical characteristics of the Late Permian tuffs in Guangyuan and its geological significance[D]. Chengdu: Chengdu University of Technology, 2020.
[7] 向芳,肖倩,喻显涛,等. 四川盆地元坝地区上二叠统海相凝灰沉积储层特征[J]. 石油与天然气地质,2022,43(4):889-901.

Xiang Fang, Xiao Qian, Yu Xiantao, et al. Reservoir characteristics of the Upper Permian marine tuffaceous deposits in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(4): 889-901.
[8] 张晗,黄虎,侯明才. 四川广元地区朝天剖面上二叠统吴家坪组凝灰岩成因及其地质意义[J]. 地球科学与环境学报,2020,42(1):36-48.

Zhang Han, Huang Hu, Hou Mingcai. Origin of tuffs from Upper Permian Wujiaping Formation in Chaotian section of Guangyuan area, Sichuan, China and its geological significance[J]. Journal of Earth Sciences and Environment, 2020, 42(1): 36-48.
[9] Mahoney J J, Coffin M F. Large igneous provinces: Continental, oceanic, and planetary flood volcanism[M]. Washington: American Geophysical Union, 1997: 1-438.
[10] 田和明,代世峰,李大华,等. 重庆南川晚二叠世凝灰岩的元素地球化学特征[J]. 地质论评,2014,60(1):169-177.

Tian Heming, Dai Shifeng, Li Dahua, et al. Geochemical features of the Late Permian tuff in Nanchuan district, Chongqing, southwestern China[J]. Geological Review, 2014, 60(1): 169-177.
[11] Huang H, Cawood P A, Hou M C, et al. Silicic ash beds bracket Emeishan large igneous province to<1m.y. at~260Ma[J]. Lithos, 2016, 264: 17-27.
[12] Huang H, Huyskens M H, Yin Q Z, et al. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: Relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary[J]. Geology, 2022, 50(9): 1083-1087.
[13] Gao Q L, Zhang N, Xia W C, et al. Origin of volcanic ash beds across the Permian-Triassic boundary, Daxiakou, South China: Petrology and U-Pb age, trace elements and Hf-isotope composition of zircon[J]. Chemical Geology, 2013, 360-361: 41-53.
[14] Yang J H, Cawood P A, Du Y S, et al. Large igneous province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261-262: 120-131.
[15] Xu L, Lin Y T, Shen W J, et al. Platinum-group elements of the Meishan Permian-Triassic boundary section: Evidence for flood basaltic volcanism[J]. Chemical Geology, 2007, 246(1/2): 55-64.
[16] 白国帅,蒋有录,侯帅,等. 龙凤山地区火石岭组火山岩优质储层主控因素及成因机制[J]. 地球科学,2022,47(5):1748-1761.

Bai Guoshuai, Jiang Youlu, Hou Shuai, et al. Main controlling factors and genetic mechanism of high-quality volcanic reservoirs in Huoshiling Formation of Longfengshan area[J]. Earth Science, 2022, 47(5): 1748-1761.
[17] 马剑. 马朗凹陷条湖组含沉积有机质凝灰岩致密油成储—成藏机理[D]. 北京:中国石油大学(北京),2016.

Ma Jian. Mechanism of reservoir formation and hydrocarbon accumulation of sedimentary organic-matter-bearing tuffaceous tight oil in the Malang Sag, northwest China[D]. Beijing: China University of Petroleum (Beijing), 2016.
[18] 李壮. 马朗凹陷卡拉岗组致密凝灰岩储层特征研究[D]. 青岛:中国石油大学(华东),2018.

Li Zhuang. Study on the characte-ristics of the tight tuff reservoir in the Kalagang Formation in the Malang Sag[D]. Qingdao: China University of Petroleum (East China), 2018.
[19] 刘小洪,王委委,冯明友,等. 准噶尔盆地克拉美丽气田滴西14井区石炭系蚀变凝灰岩储层热液作用过程及时限[J]. 地球科学,2022,47(5):1694-1710.

Liu Xiaohong, Wang Weiwei, Feng Mingyou, et al. Hydrothermal process and duration of Carboniferous altered tuff reservoir in well Dixi 14 area of Kelameili gas field (Junggar Basin), NW China[J]. Earth Science, 2022, 47(5): 1694-1710.
[20] 曾琪,胡欣,屈海洲,等. 川西北部地区上二叠统吴家坪组的地层划分及有利储集岩分布[J]. 天然气勘探与开发,2020,43(4):33-47.

Zeng Qi, Hu Xin, Qu Haizhou, et al. Division of strata and distribution of favorable reservoir rocks of the Upper Permian Wujiaping Formation in the northwestern Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(4): 33-47.
[21] 陈旋,刘俊田,龙飞,等. 三塘湖盆地二叠系凝灰岩致密油勘探开发实践及认识[J]. 中国石油勘探,2019,24(6):771-780.

Chen Xuan, Liu Juntian, Long Fei, et al. Practical experience and understanding of exploration and development of Permian tight tuff reservoir in the Santanghu Basin[J]. China Petroleum Exploration, 2019, 24(6): 771-780.
[22] 邱欣卫,刘池洋,毛光周,等. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征[J]. 地球科学:中国地质大学学报,2011,36(1):139-150.

Qiu Xinwei, Liu Chiyang, Mao Guangzhou, et al. Petrological-geochemical characteristics of volcanic ash sediments in Yanchang Formation in Ordos Basin[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(1): 139-150.
[23] 卢浩. 鄂尔多斯盆地南部长7段凝灰岩储层特征及形成机理研究[D]. 北京:中国石油大学(北京),2020.

Lu Hao. Study on tuff reservoir characteristics and formation mechanism of the Chang 7 member in the southern Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2020.
[24] 曾琪,田云英,郑超,等. 川西北部上二叠统吴家坪组沉凝灰岩分布及地质意义[J]. 天然气技术与经济,2020,14(3):20-26.

Zeng Qi, Tian Yunying, Zheng Chao, et al. Distribution of sedimentary tuff in Wujiaping Formation, northwestern Sichuan Basin and Its geological significance[J]. Natural Gas Technology and Economy, 2020, 14(3): 20-26.
[25] 徐敏,梁虹,邓绍强,等. 四川盆地二叠系火山岩地震响应特征及分布规律[J]. 科学技术与工程,2019,19(29):27-32.

Xu Min, Liang Hong, Deng Shaoqiang, et al. Seismic response characteristics and distribution of Permian volcanic rocks in Sichuan Basin[J]. Science Technology and Engineering, 2019, 19(29): 27-32.
[26] 陆建林,左宗鑫,师政,等. 四川盆地西部二叠系火山作用特征与天然气勘探潜力[J]. 天然气工业,2019,39(2):46-53.

Lu Jianlin, Zuo Zongxin, Shi Zheng, et al. Characteristics of Permian volcanism in the western Sichuan Basin and its natural gas exploration potential[J]. Natural Gas Industry, 2019, 39(2): 46-53.
[27] 罗志立. 峨眉地裂运动观对川东北大气区发现的指引作用[J]. 新疆石油地质,2012,33(4):401-407.

Luo Zhili. Guidance function of Emei taphrogenesis viewpoint on discovery of large gas province in northeastern Sichuan[J]. Xinjiang Pe-troleum Geology, 2012, 33(4): 401-407.
[28] Zhu B, Guo Z J, Zhang S N, et al. Low-Ti gabbroic pluton in Dali, SW China: New evidence for back-arc lithospheric melting inducing early-stage magmatism of the Emeishan large igneous province[J]. Journal of the Geological Society, 2021, 178(6): jgs2020-224.
[29] Zhu B, Guo Z J, Zhang S N, et al. What triggered the early-stage eruption of the Emeishan large igneous province[J]. GSA Bulletin, 2019, 131(11/12): 1837-1856.
[30] Xiao L, Xu Y G, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 525-546.
[31] 张云峰,黄泓森,曾琪,等. 川西北葛底坝剖面上二叠统吴家坪组石灰岩微相[J]. 地球科学与环境学报,2022,44(2):287-297.

Zhang Yunfeng, Huang Hongsen, Zeng Qi, et al. Microfacies of limestones from Upper Permian Wujiaping Formation at Gediba section in the northwestern Sichuan, southwest China[J]. Journal of Earth Sciences and Environment, 2022, 44(2): 287-297.
[32] 钟玉婷. 晚二叠世火山活动与生物灭绝事件的时间关系[D]. 北京:中国科学院大学,2013.

Zhong Yuting. Temporal relationship between Late Permian volcanismsand mass extinctions[D]. Beijing: University of Chinese Academy of Sciences, 2013.
[33] Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
[34] 陈积权,高远,秦健铭,等. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质,2017,29(8):17-24.

Chen Jiquan, Gao Yuan, Qin Jianming, et al. Clay mineral and major element geochemical features and their paleoclimate significance in Nenjiang Formation 1st and 2nd members, eastern margin of Songliao Basin[J]. Coal Geology of China, 2017, 29(8): 17-24.
[35] Gao Y, Wang C S, Liu Z F, et al. Clay mineralogy of the middle Mingshui Formation (Upper Campanian to Lower Maastrichtian) from the SKIn borehole in the Songliao Basin, NE China: Implications for palaeoclimate and provenance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 162-170.
[36] 文俊,任光明,庞维华,等. 四川沐川地区中三叠统凝灰岩锆石U-Pb年代学、地球化学特征及地质意义[J]. 矿床地质,2022,41(3):585-597.

Wen Jun, Ren Guangming, Pang Weihua, et al. Zircon U-Pb geochronology, geochemical characteristics and geological signifi-cance of tuff from Middle Triassic in Muchuan area, Sichuan province[J]. Mineral Deposits, 2022, 41(3): 585-597.
[37] 张丁宁,陶中一. 热液锆石形成机制、特征及地质意义研究[J]. 中国锰业,2017,35(3):31-33.

Zhang Dingning, Tao Zhongyi. Formation & characteristics of hydrothermal zircon and its geological significance[J]. China’s Manganese Industry, 2017, 35(3): 31-33.
[38] 蔡宏明,刘桂萍,展新忠. 热液锆石鉴定特征及在热液型金矿床年代学研究中的应用[J]. 中国金属通报,2019(9):270-271.

Cai Hongming, Liu Guiping, Zhan Xinzhong. Characteristics of hydrothermal zircon identification and its application in geochronology of hydrothermal gold deposits[J]. China Metal Bulletin, 2019(9): 270-271.
[39] Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(2): Q0AA06.
[40] Vermeesch P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479-1493.
[41] Tarney J. Geochemistry of Archaean high-grade gneisses, with implications as to the origin and evolution of the Precambrian crust[M]. London: Wiley, 1976: 405-417.
[42] Xu Y G, Chung S L, Shao H, et al. Silicic magmas from the Emeishan large igneous province, southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis[J]. Lithos, 2010, 119(1/2): 47-60.
[43] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[44] 张宏飞,高山. 地球化学[M]. 北京:地质出版社,2012:137-140.

Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing: Geological Publishing House, 2012: 137-140.
[45] Dai S F, Nechaev V P, Chekryzhov I Y, et al. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes[J]. Lithos, 2018, 302-303: 359-369.
[46] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
[47] Huang H, Cawood P A, Hou M C, et al. Provenance of Late Permian volcanic ash beds in South China: Implications for the age of Emeishan volcanism and its linkage to climate cooling[J]. Lithos, 2018, 314-315: 293-306s.
[48] Anh T V, Pang K N, Chung S L, et al. The Song Da magmatic suite revisited: A petrologic, geochemical and Sr-Nd isotopic study on picrites, flood basalts and silicic volcanic rocks[J]. Journal of Asian Earth Sciences, 2011, 42(6): 1341-1355.
[49] Cheng L L, Wang Y, Herrin J S, et al. Origin of K-feldspar megacrysts in rhyolites from the Emeishan large igneous province, southwest China[J]. Lithos, 2017, 294-295: 397-411.
[50] Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: Implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China[J]. Earth and Planetary Science Letters, 2010, 289(3/4): 509-519.
[51] Hong H L, Fang Q, Wang C W, et al. Clay mineralogy of altered tephra beds and facies correlation between the Permian-Triassic boundary stratigraphic sets, Guizhou, South China[J]. Applied Clay Science, 2017, 143: 10-21.
[52] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S. Orogenic andesites and related rocks. Chichester: John Wiley and Sons, 1982: 528-548.
[53] McLennan S M, Hemming S R, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]. Boulder: Geological Society of America, 1993.
[54] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343.
[55] McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[56] Gibbs A K. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1986, 94(4): 632-633.
[57] 姜春发,王宗起,李锦轶. 中央造山带开合构造[M]. 北京:地质出版社,2000:1-107.

Jiang Chunfa, Wang Zongqi, Li Jinyi. Open-close tectonics of the central orogenic belt[M]. Beijing: Geological Publishing House, 2000: 1-107.
[58] 肖庆辉,邓晋福,马大铨,等. 花岗岩研究思维与方法[M]. 北京:地质出版社,2002:1-294.

Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. The ways of investigation on granitoids[M]. Beijing: Geological Publishing House, 2002: 1-294.
[59] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
[60] 刘秀. 天山东段晚古生代火山岩南北对比及其大地构造意义[D]. 北京:中国地质大学(北京),2020.

Liu Xiu. Late Paleozoic volcanic rocks tectonic evolution and its north-south comparison in the eastern Tianshan[D]. Beijing: China University of Geosciences (Beijing), 2020.
[61] 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学,2007,31(1):92-103.

Zhao Zhenhua. How to use the trace element diagrams to discriminate tectonic settings[J]. Geotectonica et Metallogenia, 2007, 31(1): 92-103.
[62] 李一苇. 川西北地区上二叠统吴家坪组凝灰岩特征及储集性[D]. 成都:西南石油大学,2022.

Li Yiwei. Characteristics and reservoir property of tuffs of Upper Permian Wujiaping Formation in northwest Sichuan[D]. Chengdu: Southwest Petroleum University, 2022.
[63] 雷玮琰,施光海,刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘,2013,20(4):273-284.

Lei Weiyan, Shi Guanghai, Liu Yingxin. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 2013, 20(4): 273-284.
[64] 郑江,郗爱华,葛玉辉,等. 峨眉山玄武岩蚀变年龄及其对扬子西缘热事件的响应[J]. 科学通报,2022,67(36):4415-4428.

Zheng Jiang, Xi Aihua, Ge Yuhui, et al. Alteration age of Emeishan basalt and its response to thermal events on the western margin of the Yangtze Block[J]. Chinese Science Bulletin, 2022, 67(36): 4415-4428.
[65] 朱炳泉,戴橦谟,胡耀国,等. 滇东北峨眉山玄武岩中两阶段自然铜矿化的40Ar/39Ar与U-Th-Pb年龄证据[J]. 地球化学,2005,34(3):235-247.

Zhu Bingquan, Dai Tongmo, Hu Yaoguo, et al. 40Ar/39Ar and U-Th-Pb dating for native copper mineralizations of two stages from the Emeishan flood basalts in northeastern Yunnan province, China[J]. Geochimica, 2005, 34(3): 235-247.
[66] 李建忠,白斌,白莹,等. 川西北地区二叠系栖霞组超深层气藏流体演化过程与成藏模式[J]. 石油勘探与开发,2022,49(4):627-636.

Li Jianzhong, Bai Bin, Bai Ying, et al. Fluid evolution and hydrocarbon accumulation model of sultra-deep gas reservoirs in Permian Qixia Formation of northwest Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2022, 49(4): 627-636.
[67] 管树巍,姜华,鲁雪松,等. 四川盆地中部走滑断裂系统及其控油气作用[J]. 石油学报,2022,43(11):1542-1557.

Guan Shuwei, Jiang Hua, Lu Xuesong, et al. Strike-slip fault system and its control on oil & gas accumulation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1542-1557.
[68] 刘书强,姚孟多,冯亚琴,等. 马朗凹陷条湖组凝灰岩脱玻化孔影响因素与油气关系[J]. 特种油气藏,2018,25(1):16-19.

Liu Shuqiang, Yao Mengduo, Feng Yaqin, et al. Influencing factor analysis of devitrification pore and its relationship with hydrocarbon in Tiaohu Formation of Malang Depression[J]. Special Oil and Gas Reservoirs, 2018, 25(1): 16-19.