[1] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[2] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[3] 黄金亮,邹才能,李建忠,等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发,2012,39(1):69-75.

Huang Jinliang, Zou Caineng, Li Jianzhong, et al. Shale gas gene-ration and potential of the lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-75.
[4] 赵文智,李建忠,杨涛,等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.

Zhao Wenzhi, Li Jianzhong, Yang Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
[5] 夏威,于炳松,王运海,等. 黔北牛蹄塘组和龙马溪组沉积环境及有机质富集机理:以RY1井和XY1井为例[J]. 矿物岩石,2017,37(3):77-89.

Xia Wei, Yu Bingsong, Wang Yunhai, et al. Study on the depositional environment and organic accumulation mechanism in the Niutitang and Longmaxi Formation, north Guizhou province: A case study of well Renye 1 and well Xiye 1[J]. Journal of Mineralogy and Petrology, 2017, 37(3): 77-89.
[6] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[7] Qiu Z, Zou C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194: 103989.
[8] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
[9] Marshall C R. Explaining the Cambrian “explosion” of animals[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 355-384.
[10] 朱光有,赵坤,李婷婷,等. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报,2020,41(12):1567-1586.

Zhu Guangyou, Zhao Kun, Li Tingting, et al. Sedimentary environment, development model and distribution prediction of lower Cambrian source rocks in South China[J]. Acta Petrolei Sinica, 2020, 41(12): 1567-1586.
[11] 吴诗情,郭建华,王玺凯,等. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理[J]. 中南大学学报(自然科学版),2020,51(8):2049-2060.

Wu Shiqing, Guo Jianhua, Wang Xikai, et al. Geochemical characteristics and organic matter enrichment mechanism of the lower Cambrian Niutitang Formation black rock series in central Hunan[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2049-2060.
[12] Xu C, Melchin M J, Sheets H D, et al. Patterns and processes of Latest Ordovician graptolite extinction and recovery based on data from South China[J]. Journal of Paleontology, 2005, 79(5): 842-861.
[13] 戎嘉余,黄冰. 生物大灭绝研究三十年[J]. 中国科学:地球科学,2014,44(3):377-404.

Rong Jiayu, Huang Bing. Study of mass extinction over the past thirty years: A synopsis[J]. Science China: Earth Sciences, 2014, 44(3): 377-404.
[14] 王玉满,李新景,王皓,等. 四川盆地东部上奥陶统五峰组—下志留统龙马溪组斑脱岩发育特征及地质意义[J]. 石油勘探与开发,2019,46(4):653-665.

Wang Yuman, Li Xinjing, Wang Hao, et al. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(4): 653-665.
[15] Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337.
[16] 徐壮,石万忠,翟刚毅,等. 扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因[J]. 地球科学,2017,42(7):1223-1234.

Xu Zhuang, Shi Wanzhong, Zhai Gangyi, et al. Relationship differences and causes between porosity and organic carbon in black shales of the lower Cambrian and the Lower Silurian in Yangtze area[J]. Earth Science, 2017, 42(7): 1223-1234.
[17] 王濡岳,胡宗全,聂海宽,等. 川东南五峰组—龙马溪组与黔东南牛蹄塘组页岩储层特征对比分析与差异性探讨[J]. 石油实验地质,2018,40(5):639-649.

Wang Ruyue, Hu Zongquan, Nie Haikuan, et al. Comparative analysis and discussion of shale reservoir characteristics in the Wufeng-Longmaxi and Niutitang Formations: A case study of the well JY1 in SE Sichuan Basin and well TX1 in SE Guizhou area[J]. Petroleum Geology & Experiment, 2018, 40(5): 639-649.
[18] Xi Z D, Tang S H, Zhang S H, et al. Controls of marine shale gas accumulation in the eastern periphery of the Sichuan Basin, South China[J]. International Journal of Coal Geology, 2022, 251: 103939.
[19] 王玉满,陈波,李新景,等. 川东北地区下志留统龙马溪组上升洋流相页岩沉积特征[J]. 石油学报,2018,39(10):1092-1102.

Wang Yuman, Chen Bo, Li Xinjing, et al. Sedimentary characteristics of upwelling facies shale in Lower Silurian Longmaxi Formation, northeast Sichuan area[J]. Acta Petrolei Sinica, 2018, 39(10): 1092-1102.
[20] 肖斌,刘树根,冉波,等. 基于元素Mn、Co、Cd、Mo的海相沉积岩有机质富集因素判别指标在四川盆地北缘的应用[J]. 地质论评,2019,65(6):1316-1330.

Xiao Bin, Liu Shugen, Ran Bo, et al. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: Application in the northern margin of Sichuan Basin, South China[J]. Geological Review, 2019, 65(6): 1316-1330.
[21] 王玉满,王红岩,沈均均,等. 川北—鄂西地区下志留统龙马溪组上段厚层斑脱岩的新发现及地质意义[J]. 石油学报,2020,41(11):1309-1323.

Wang Yuman, Wang Hongyan, Shen Junjun, et al. A new discovery and geological significance of thick-layered bentonites in the Upper member of Lower Silurian Longmaxi Formation in the northern Sichuan-western Hubei area[J]. Acta Petrolei Sinica, 2020, 41(11): 1309-1323.
[22] 马永生,陈洪德,王国力,等. 中国南方构造—层序岩相古地理图集(震旦纪—新近纪)[M]. 北京:科学出版社,2009:1-301.

Ma Yongsheng, Chen Hongde, Wang Guoli, et al. Tectonic sequence stratigraphy and lithofacies paleogeography of Sinian-Neogene in southern China[M]. Beijing: Science Press, 2009: 1-301.
[23] Ma Y Q, Lu Y C, Liu X F, et al. Depositional environment and organic matter enrichment of the lower Cambrian Niutitang shale in western Hubei province, South China[J]. Marine and Petroleum Geology, 2019, 109: 381-393.
[24] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48.

Zhang Shuichang, Zhang Baoming, Bian Lizeng, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
[25] Wang S F, Zou C N, Dong D Z, et al. Multiple controls on the paleoenvironment of the early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
[26] 刘忠宝,高波,张钰莹,等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.

Liu Zhongbao, Gao Bo, Zhang Yuying, et al. Types and distribution of the shale sedimentary facies of the lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31.
[27] Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
[28] 邱振,邹才能,王红岩,等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学,2020,31(2):163-175.

Qiu Zhen, Zou Caineng, Wang Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[29] 石红才,施小斌. 中、上扬子白垩纪以来的剥蚀过程及构造意义:低温年代学数据约束[J]. 地球物理学报,2014,57(8):2608-2619.

Shi Hongcai, Shi Xiaobin. Exhumation process of Middle-Upper Yangtze since Cretaceous and its tectonic significance: Low-temperature thermochronology constraints[J]. Chinese Journal of Geophysics, 2014, 57(8): 2608-2619.
[30] 刘树根,王一刚,孙玮,等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版),2016,43(1):1-23.

Liu Shugen, Wang Yigang, Sun Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23.
[31] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[32] 王玉满,沈均均,邱振,等. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学,2021,32(9):1308-1323.

Wang Yuman, Shen Junjun, Qiu Zhen, et al. Characteristics and environmental significance of concretion in the lower Cambrian Qiongzhusi Formation in the Middle-Upper Yangtze area[J]. Natural Gas Geoscience, 2021, 32(9): 1308-1323.
[33] 刘忠宝,王鹏威,聂海宽,等. 中上扬子地区寒武系页岩气富集条件及有利区优选[J]. 中南大学学报(自然科学版),2022,53(9):3694-3707.

Liu Zhongbao, Wang Pengwei, Nie Haikuan, et al. Enrichment conditions and favorable prospecting targets of Cambrian shale gas in Middle-Upper Yangtze[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3694-3707.
[34] Algeo T J, Liu J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 2020, 540: 119549.
[35] 昝博文,刘树根,冉波,等. 扬子板块北缘下志留统龙马溪组重晶石结核特征及其成因机制分析[J]. 岩石矿物学杂志,2017,36(2):213-226.

Zan Bowen, Liu Shugen, Ran Bo, et al. An analysis of barite concretions from Lower Silurian Longmaxi Formation on the northern margin of the Yangtze Block and their genetic mechanism[J]. Acta Petrologica et Mineralogica, 2017, 36(2): 213-226.
[36] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878.
[37] 仲义,陈忠,莫爱彬,等. 南海北部铁锰结核成因及元素的赋存状态[J]. 热带海洋学报,2017,36(2):48-59.

Zhong Yi, Chen Zhong, Mo Aibin, et al. Genetic types and elemental occurrence phases of ferromanganese nodules in the northern South China Sea[J]. Journal of Tropical Oceanography, 2017, 36(2): 48-59.
[38] 张力,马向贤,马勇,等. 基于硫元素化学种等指标的页岩氧化还原条件判识:以N208井筇竹寺组和龙马溪组为例[J]. 沉积学报,2022,40(5):1427-1438.

Zhang Li, Ma Xiangxian, Ma Yong, et al. Multiple proxies for redox condition indentification based on sulfur species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1427-1438.
[39] 左荃文. 基于NanoSIMS的早古生代海相页岩中黄铁矿的硫同位素研究及其对沉积环境的指示意义[D]. 北京:中国地质大学(北京),2020:27-100.

Zuo Quanwen. NanoSIMS sulfur isotope studies of pyrite from an Early Paleozoic marine shale: Implications for the sedimentary environment[D]. Beijing: China University of Geosciences (Beijing), 2020: 27-100.
[40] 郭战峰,刘新民,盛贤才,等. 东秦岭—大别造山带南侧加里东期古隆起特征及油气地质意义[J]. 石油实验地质,2009,31(2):181-185.

Guo Zhanfeng, Liu Xinmin, Sheng Xiancai, et al. Petroleum geological significance and characteristics of Caledonian paleouplift in the southern margin of East Qinling and Dabie orogenic belt[J]. Petroleum Geology & Experiment, 2009, 31(2): 181-185.
[41] 张伟,杨瑞东,毛铁,等. 瓮安埃迪卡拉系灯影组叠层石磷块岩形成环境及成矿机制[J]. 高校地质学报,2015,21(2):186-195.

Zhang Wei, Yang Ruidong, Mao Tie, et al. Sedimentary environment and mineralization mechanism of the stromatolitic phosphorite in the Ediacaran Dengying Formation, Weng′an county of Guizhou province, China[J]. Geological Journal of China Universities, 2015, 21(2): 186-195.
[42] 何龙,王云鹏,陈多福,等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学,2019,30(2):203-218.

He Long, Wang Yunpeng, Chen Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2019, 30(2): 203-218.
[43] Sweere T, van den Boorn S, Dickson A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245.
[44] 李艳芳,吕海刚,张瑜,等. 四川盆地五峰组—龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学,2015,44(2):109-116.

Li Yanfang, Haigang Lü, Zhang Yu, et al. U-Mo covariation in marine shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica, 2015, 44(2): 109-116.