[1] 姜在兴,陈代钊. 沉积学[M]. 北京:中国石化出版社,2022:1-608.

Jiang Zaixing, Chen Daizhao. Sedimentology[M]. Beijing: China Petrochemical Press, 2022: 1-608.
[2] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.

Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253.
[3] Liu J B. Marine sedimentary response to the great Ordovician biodiversification event: Examples from North China and South China[J]. Paleontological Research, 2009, 13(1): 9-21.
[4] 张元动,詹仁斌,樊隽轩,等. 奥陶纪生物大辐射研究的关键科学问题[J]. 中国科学(D辑):地球科学,2009,39(2):129-143.

Zhang Yuandong, Zhan Renbin, Fan Juanxuan, et al. Key scientific issues in the study of the Ordovician biomass radiation[J]. Science China (Seri. D): Earth Sciences, 2009, 39(2): 129-143.
[5] Servais T, Harper D A T. The great Ordovician biodiversification event (GOBE): Definition, concept and duration[J]. Lethaia, 2018, 51(2): 151-164.
[6] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010.
[7] 张允白,周志毅,张俊明. 扬子陆块早奥陶世末期—中奥陶世Darriwilian初期沉积分异[J]. 地层学杂志,2002,26(4):302-314.

Zhang Yunbai, Zhou Zhiyi, Zhang Junming. Sedimentary differentiation during the latest Early Ordovician—earliest Darriwilian in the Yangtze Block[J]. Journal of Stratigraphy, 2002, 26(4): 302-314.
[8] 冯增昭,彭勇民,金振奎,等. 中国南方早奥陶世岩相古地理[J]. 古地理学报,2001,3(2):11-22.

Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Early Ordovilian in South China[J]. Journal of Palaeogeography, 2001, 3(2): 11-22.
[9] 胡书毅,文玲,田海芹. 扬子地区奥陶纪古地理与石油地质条件[J]. 中国海上油气(地质),2001,15(5):317-321,334.

Hu Shuyi, Wen Ling, Tian Haiqin. Ordovician paleogeography and petroleum geology in Yangtze region[J]. China Offshore Oil and Gas (Geology), 2001, 15(5): 317-321, 334.
[10] 陈清,樊隽轩,张琳娜,等. 下扬子区奥陶纪晚期古地理演变及华南“台—坡—盆”格局的打破[J]. 中国科学(D辑):地球科学,2018,48(6):767-777.

Chen Qing, Fan Junxuan, Zhang Linna, et al. Paleogeographic evolution of the Lower Yangtze region and the break of the “platform-slope-basin” pattern during the Late Ordovician[J]. Science China (Seri. D): Earth Sciences, 2018, 48(6): 767-777.
[11] 汪啸风. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比[J]. 地学前缘,2016,23(6):253-267.

Wang Xiaofeng. Ordovician tectonic-paleogeography in South China and chrono- and bio-stratigraphic division and correlation[J]. Earth Science Frontiers, 2016, 23(6): 253-267.
[12] 肖传桃,朱忠德,李相明. 中扬子台地下奥陶统含礁层系层序地层研究[J]. 中国地质,2003,30(3):274-280.

Xiao Chuantao, Zhu Zhongde, Li Xiangming. Sequence stratigraphy of Lower Ordovician reef-bearing strata in the Middle Yangtze Platform[J]. Geology in China, 2003, 30(3): 274-280.
[13] 王建坡,李越,张园园,等. 早—中奥陶世瓶筐石礁丘:历史和古生态学[J]. 古生物学报,2011,50(1):132-140.

Wang Jianpo, Li Yue, Zhang Yuanyuan, et al. Early-Middle Ordovician calathium reef mounds: History and palaeoecology[J]. Acta Palaeontologica Sinica, 2011, 50(1): 132-140.
[14] 王建坡,邓小杰,王冠,等. 中国奥陶纪生物礁的类型和造礁生物群的演替[J]. 科学通报,2012,57(11):924-932.

Wang Jianpo, Deng Xiaojie, Wang Guan, et al. Types and biotic successions of Ordovician reefs in China[J]. Chinese Science Bulletin, 2012, 57(11): 924-932.
[15] 赵莹莹,张园园,倪超,等. 黔西北桐梓水坝塘下奥陶统桐梓组碳酸盐岩微相[J]. 微体古生物学报,2014,31(4):429-439.

Zhao Yingying, Zhang Yuanyuan, Ni Chao, et al. Carbonate microfacies of the Lower Ordovician Tungtzu Formation at Shuibatang, Tongzi, northwest Guizhou province[J]. Acta Micropalaeontologica Sinica, 2014, 31(4): 429-439.
[16] 蒋丽平,李越,倪超,等. 贵州桐梓红花园剖面下奥陶统桐梓组灰岩微相和区域沉积分异[J]. 微体古生物学报,2015,32(4):411-418.

Jiang Liping, Li Yue, Ni Chao, et al. Microfacies of the Lower Ordovician Tungtzu Formation at the Honghuayuan section, Tongzi, Guizhou province with special references on regional facies differentiations[J]. Acta Micropalaeontologica Sinica, 2015, 32(4): 411-418.
[17] 何犇,喻美艺,代雅然,等. 贵州凯里黄飘地区下奥陶统红花园组碳酸盐岩微相及沉积环境[J]. 贵州地质,2018,35(3):188-196.

He Ben, Yu Meiyi, Dai Yaran, et al. Carbonate micro-facies and sedimentary environment in Honghuayuan Formation (Lower Ordovician) in Huangpiao area of Kaili, Guizhou[J]. Guizhou Geology, 2018, 35(3): 188-196.
[18] 池祥日,杨宇宁,闫冠州,等. 黔中贵阳乌当地区下—中奥陶统的牙形刺生物地层[J]. 微体古生物学报,2023,40(1):13-32.

Chi Xiangri, Yang Yuning, Yan Guanzhou, et al. Conodont biostratigraphy of the Lower-Middle Ordovician in Wudang, Guiyang, Guizhou province, South China[J]. Acta Micropalaeontologica Sinica, 2023, 40(1): 13-32.
[19] 樊茹,卢远征,张学磊,等. 贵州习水奥陶系牙形石生物地层[J]. 地层学杂志,2015,39(1):15-32.

Fan Ru, Lu Yuanzheng, Zhang Xuelei, et al. Ordovician conodont biostratigraphy of the Ordovician Liangcun section in Guizhou province, South China[J]. Journal of Stratigraphy, 2015, 39(1): 15-32.
[20] 王冬梅,杨宇宁,刘伟,等. 黔北早奥陶世疑难钙藻化石Nuia的形态分类与钙化机制[J]. 地质学报,2022,97(7):2093-2110.

Wang Dongmei, Yang Yuning, Liu Wei, et al. Morphological identification and calcification mechanism of the problemetic Nuia (calcified rivulariacean) from northern Guizhou during the Early Ordovician[J]. Acta Geologica Sinica, 2023, 97(7): 2093-2110.
[21] Bádenas B, Aurell M. Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain)[J]. Facies, 2010, 56(1): 89-110.
[22] Tucker M E, Wright V P. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990: 1-482.
[23] 徐政语,姚根顺,郭庆新,等. 黔南坳陷构造变形特征及其成因解析[J]. 大地构造与成矿学,2010,34(1):20-31.

Xu Zhengyu, Yao Genshun, Guo Qingxin, et al. Genetic interpretation about geotectonics and structural transfiguration of the southern Guizhou Depression[J]. Geotectonica et Metallogenia, 2010, 34(1): 20-31.
[24] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[25] 杜远生,徐亚军. 华南加里东运动初探[J]. 地质科技情报,2012,31(5):43-49.

Du Yuansheng, Xu Yajun. A preliminary study on Caledonian event in South China[J]. Geological Science and Technology Information, 2012, 31(5): 43-49.
[26] 贵州省地质调查院. 贵州省区域地质志[M]. 北京:地质出版社,1987:179-219.

Guizhou Geological Survey. The regional geology of China, Guizhou province[M]. Beijing: Geological Publishing House, 1987: 179-219.
[27] 邓新,杨坤光,刘彦良,等. 黔中隆起性质及其构造演化[J]. 地学前缘,2010,17(3):79-89.

Deng Xin, Yang Kunguang, Liu Yanliang, et al. Characteristics and tectonic evolution of Qianzhong uplift[J]. Earth Science Frontiers, 2010, 17(3): 79-89.
[28] 沈志达,梅冥相,曾羽. 贵州太康运动的地层学效应:兼论“黔中古陆”的形成[J]. 贵州地质,1990,7(2):91-98.

Shen Zhida, Mei Mingxiang, Zeng Yu. The stratigraphic effect of the taconic movement in Guizhou: A discussion on the formation of palaeoland of central Guizhou[J]. Guizhou Geology, 1990, 7(2): 91-98.
[29] 陈旭,樊隽轩,陈清,等. 论广西运动的阶段性[J]. 中国科学(D辑):地球科学,2014,44(5):842-850.

Chen Xu, Fan Junxuan, Chen Qing, et al. Toward a stepwise Kwangsian orogeny[J]. Science China (Seri. D): Earth Sciences, 2014, 44(5): 842-850.
[30] Tucker M E. Sedimentary rocks in the field: A practical guide[M]. 4th ed. Hoboken: John Wiley & Sons, 2011: 1-234.
[31] Dunham R J. Classification of carbonate rocks according to depositional texture[M]//Ham W E. Classification of carbonate rocks. Tulsa: AAPG Memoir, 1962: 108-121.
[32] Embry A F, Klovan J E. A Late Devonian reef tract on northeastern Banks Island, N.W.T.1[J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4): 730-781.
[33] Burchette T P, Wright V P. Carbonate ramp depositional systems[J]. Sedimentary Geology, 1992, 79(1/2/3/4): 3-57.
[34] Guo C, Chen D Z, Song Y F, et al. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China)[J]. Journal of Asian Earth Sciences, 2018, 158: 29-48.
[35] 陈代钊,汪建国,严德天,等. 中扬子地区早寒武世构造—沉积样式与古地理格局[J]. 地质科学,2012,47(4):1052-1070.

Chen Daizhao, Wang Jianguo, Yan Detian, et al. Tectono-depositional patterns and palaeogeography in the Middle Yangtze River region during the Early Cambrian[J]. Chinese Journal of Geology, 2012, 47(4): 1052-1070.
[36] Ding Y, Chen D Z, Zhou X Q, et al. Tectono-depositional pattern and evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran[J]. Precambrian Research, 2019, 333: 105426.
[37] Ding Y, Li Z W, Liu S G, et al. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the Upper Yangtze area, South China[J]. Precambrian Research, 2021, 354: 106077.
[38] Dumas S, Arnott R W C. Origin of hummocky and swaley cross-stratification–the controlling influence of unidirectional current strength and aggradation rate[J]. Geology, 2006, 34(12): 1073-1076.
[39] 冯宇翔,宋金民,刘树根,等. 川西地区雷口坡组风暴沉积特征及其地质意义[J]. 沉积学报,2023,41(3):661-672.

Feng Yuxiang, Song Jinmin, Liu Shugen, et al. Sedimentary characteristics and geological significance of tempestites in the Leikoupo Formation, western Sichuan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 661-672.
[40] Chen D Z, Tucker M E, Jiang M S, et al. Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China[J]. Sedimentology, 2001, 48(1): 57-78.
[41] 郭川,陈代钊,付勇,等. 塔里木盆地西部地区中奥陶统一间房组沉积演化及其控制因素[J]. 地质学报,2022,96(11):3924-3942.

Guo Chuan, Chen Daizhao, Fu Yong, et al. Depositional evolution and its controls of the Middle Ordovician Yijianfang Formation in western Tarim Basin[J]. Acta Geologica Sinica, 2022, 96(11): 3924-3942.
[42] Li F, Yan J X, Burne R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107.
[43] Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-Science Reviews, 2015, 149: 163-180.
[44] 任凭,林畅松,韩剑发,等. 塔中北斜坡鹰山组碳酸盐岩沉积微相特征与演化[J]. 天然气地球科学,2015,26(2):241-251.

Ren Ping, Lin Changsong, Han Jianfa, et al. Microfacies characteristics and depositional evolution of the Lower Ordovician Yingshan Formation in north slope of Tazhong area, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(2): 241-251.
[45] 韩睿,张尚锋,罗顺社,等. 碎屑岩与碳酸盐岩混合沉积模式:以新疆塔西南地区上石炭统卡拉乌依组为例[J]. 断块油气田,2023,30(2):269-276.

Han Rui, Zhang Shangfeng, Luo Shunshe, et al. Mixed sedimentary model of clastic rocks and carbonate rocks: A case study of Karawuyi Formation of Upper Carboniferous in southwest Tarim, Xinjiang[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 269-276.
[46] Porta G D, Mancini A, Berra F. Facies character and evolution of a mixed carbonate–siliciclastic shelf: Upper Triassic–Lower Jurassic succession in the eastern northern Calcareous Alps (Stumpfmauer, Austria)[J]. Facies, 2023, 69(3): 11.
[47] Zeller M, Verwer K, Eberli G P, et al. Depositional controls on mixed carbonate-siliciclastic cycles and sequences on gently inclined shelf profiles[J]. Sedimentology, 2015, 62(7): 2009-2037.
[48] Zhang Y Q, Chen D Z, Zhou X Q, et al. Depositional facies and stratal cyclicity of dolomites in the lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China[J]. Facies, 2015, 61(1): 417.
[49] Guo C, Chen D Z, Zhou X Q, et al. Depositional facies and cyclic patterns in a subtidal-dominated ramp during the Early-Middle Ordovician in the western Tarim Basin (NW China)[J]. Facies, 2018, 64(3): 16.
[50] Chen D Z, Guo Z H, Jiang M S, et al. Dynamics of cyclic carbonate deposition and biotic recovery on platforms during the Famennian of Late Devonian in Guangxi, South China: Constraints from high-resolution cycle and sequence stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 245-265.
[51] Chen D Z, Tucker M E, Zhu J Q, et al. Carbonate platform evolution: From a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China)[J]. Sedimentology, 2002, 49(4): 737-764.
[52] Fang Q, Wu H C, Hinnov L A, et al. A record of astronomically forced climate change in a Late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174.
[53] 梅冥相. 从旋回的有序叠加形式到层序的识别和划分:层序地层学进展之三[J]. 古地理学报,2011,13(1):37-54.

Mei Mingxiang. From vertical stacking pattern of cycles to discerning and division of sequences: The third advance in sequence stratigraphy[J]. Journal of Palaeogeography, 2011, 13(1): 37-54.
[54] Embry A F, Johannessen E P. T–R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada[J]. Norwegian Petroleum Society Special Publications, 1993, 2: 121-146.
[55] 孙永超,刘建波. 华南上扬子区奥陶纪特马豆克阶的海平面变化[J]. 北京大学学报(自然科学版),2017,53(1):66-80.

Sun Yongchao, Liu Jianbo. Sea-level fluctuations in the Tremadocian of the Ordovician in the Upper Yangtze region of South China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1): 66-80.
[56] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[57] Su W B. Ordovician sea-level changes: Evidence from the Yangtze Platform[J]. Acta Palaeontologica Sinica, 2007, 46: 471-476.
[58] Munnecke A, Calner M, Harper D A T, et al. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(3/4): 389-413.
[59] Heredia S, Beresi M. Ordovician events and sea level changes on the western margin of Gondwana: The argentine precordillera[C]//Ordovician odyssey: Proceedings of 7th international symposium on the Ordovician system. California: Pacific Section, 1995: 315-318.
[60] Ross C A, Ross J R P. North American depositional sequences and correlations[C]//Ordovician odyssey: Proceedings of 7th international symposium on the Ordovician system. California: Pacific Section SEPM, 1995: 309-313.
[61] 黄福喜,陈洪德,侯明才,等. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报,2011,27(8):2299-2317.

Huang Fuxi, Chen Hongde, Hou Mingcai, et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze Craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica, 2011, 27(8): 2299-2317.
[62] 王建坡,李越,程龙,等. 华南板块古生代生物礁及其古地理控制因素[J]. 古生物学报,2014,53(1):121-131.

Wang Jianpo, Li Yue, Cheng Long, et al. Paleozoic reefs and their paleogeological controls in South China Block[J]. Acta Palaeontologica Sinica, 2014, 53(1): 121-131.
[63] 郭川,李国蓉,杨莹莹,等. 川东南地区长兴组层序地层与沉积相特征[J]. 断块油气田,2012,18(6):722-725.

Guo Chuan, Li Guorong, Yang Yingying, et al. Sequence stratigraphy and sedimentary facies characteristics of Changxing Formation in southeastern Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2011, 18(6): 722-725.
[64] 郭川,李国蓉,杨莹莹,等. 川东南涪陵地区长兴组层序地层及沉积相演化特征[J]. 岩性油气藏,2011,23(4):41-47.

Guo Chuan, Li Guorong, Yang Yingying, et al. Characteristics of sedimentary facies and sequence stratigraphy of Changxing Formation in Fuling area, southeastern Sichuan Basin[J]. Lithologic Reservoirs, 2011, 23(4): 41-47.
[65] 郭彤楼. 元坝气田长兴组储层特征与形成主控因素研究[J]. 岩石学报,2011,27(8):2381-2391.

Guo Tonglou. Reservoir characteristics and its controlling factors of the Changxing Formation reservoir in the Yuanba gas field, Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2381-2391.
[66] 宋亚芳,陈代钊,郭川,等. 塔里木盆地肖尔布拉克剖面肖尔布拉克组下段微生物碳酸盐岩沉积特征[J]. 沉积学报,2020,38(1):55-63.

Song Yafang, Chen Daizhao, Guo Chuan, et al. Depositional characteristics of microbial carbonates from the lower Xiaoerbulak Formation in the Xiaoerbulake section, Tarim Basin[J]. Acta Sedimentologica Sinica, 2020, 38(1): 55-63.
[67] 曹子颜,颜瑞晶,王旭,等. 川南—黔北地区寒武系娄山关群沉积特征及对储层的控制作用[J]. 矿物岩石,2020,40(1):89-99.

Cao Ziyan, Yan Ruijing, Wang Xu, et al. Sedimentary characteristics and their control on the Cambrian Loushanguan Group reservoirs in south Sichuan-north Guizhou[J]. Mineralogy and Petrology, 2020, 40(1): 89-99.