[1] Bann K L, Fielding C R, MacEachern J A, et al. Differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology: Permian Pebbley Beach Formation, Sydney Basin, Australia[J]. Geological Society, London, Special Publications, 2004, 228(1): 179-211.
[2] Gingras M K, Pemberton S G, Saunders T, et al. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: Variability in estuarine settings[J]. Palaios, 1999, 14(4): 352-374.
[3] Howard J D, Frey R W. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah[J]. Canadian Journal of Earth Sciences, 1984, 21(2): 200-219.
[4] Pemberton S G, Wightman D M. Ichnological characteristics of brackish water deposits[M]//Pemberton S G. Applications of ichnology to petroleum exploration: A core workshop. Tulsa: Socie-ty for Sedimentary Geology, 1992: 141.
[5] Pemberton S G, MacEachern J A, Frey R W. Trace fossil facies models: Environmental and allostratigraphic significance[M]//Walker R G, James N P. Facies models: Response to sea level change. St. John’s, Newfoundland: Geological Association of Canada, 1992: 47-72.
[6] Savrda C E, Bottjer D J. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado[J]. Palaeo-geography, Palaeoclimatology, Palaeoecology, 1989, 74(1/2): 49-74.
[7] Seilacher A. Bathymetry of trace fossils[J]. Marine Geology, 1967, 5(5/6): 413-428.
[8] Taylor A, Goldring R, Gowland S. Analysis and application of ichnofabrics[J]. Earth-Science Reviews, 2003, 60(3/4): 227-259.
[9] La Croix A D, Dashtgard S E. A synthesis of depositional trends in intertidal and upper subtidal sediments across the tidal–fluvial transition in the Fraser River, Canada[J]. Journal of Sedimentary Research, 2015, 85(6): 683-698.
[10] Swinbanks D D, Luternauer J L. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia[J]. Journal of Paleontology, 1987, 61(2): 315-332.
[11] Swinbanks D D, Murray J W. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia[J]. Sedimentology, 1981, 28(2): 201-237.
[12] Abdel-Fattah Z A. Morpho-sedimentary characteristics and generated primary sedimentary structures on the modern microtidal sandy coast of eastern Nile Delta, Egypt[J]. Journal of African Earth Sciences, 2019, 150: 355-378.
[13] Frihy O E, Dewidar K M. Patterns of erosion/sedimentation, heavy mineral concentration and grain size to interpret boundaries of littoral sub-cells of the Nile Delta, Egypt[J]. Marine Geology, 2003, 199(1/2): 27-43.
[14] 胡斌,王媛媛,张璐,等. 黄河中下游焦作区段现代边滩沉积中的生物遗迹[J]. 古地理学报,2012,14(5):628-638.

Hu Bin, Wang Yuanyuan, Zhang Lu, et al. Biogenic traces in modern point bar deposits of the middle-lower reaches of Yellow River in Jiaozuo area, Henan province[J]. Journal of Palaeogeography, 2012, 14(5): 628-638.
[15] 黄学勇,高茂生,侯国华,等. 现代黄河三角洲南部潮间带及附近海域沉积特征认识与分析[J]. 沉积学报,2021,39(2):408-423.

Huang Xueyong, Gao Maosheng, Hou Guohua, et al. Recognition and analysis of sedimentary characteristics of the southern intertidal area of Yellow River Delta and adjacent sea area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 408-423.
[16] 李栓科. 近代黄河三角洲的沉积特征[J]. 地理研究,1989,8(4):45-55.

Li Shuanke. Sedimentary characteristics in the modern Yellow River Delta[J]. Geographical Research, 1989, 8(4): 45-55.
[17] 林承焰,姜在兴,董春梅,等. 黄河三角洲沉积环境和沉积模式[J]. 石油大学学报(自然科学版),1993,17(3):5-11.

Lin Chengyan, Jiang Zaixing, Dong Chunmei, et al. Sedimentary environment and model of the Yellow River Delta[J]. Journal of the University of Petroleum, China, 1993, 17(3): 5-11.
[18] 彭俊,陈沈良,李谷祺. 末次冰盛期后黄河三角洲潮滩沉积及其环境指示[J]. 海洋地质与第四纪地质,2014,34(2):19-26.

Peng Jun, Chen Shenliang, Li Guqi. Sedimentary information of tidal flat of the Yellow River Delta after Last Glacial Maximum and its environmental implications[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 19-26.
[19] 王翠,王媛媛,胡斌. 黄河三角洲潮坪环境现代生物遗迹与物化条件的响应关系[J]. 沉积学报,2023,41(3):748-762.

Wang Cui, Wang Yuanyuan, Hu Bin. The response relationship between biogenic structures and physicochemical stresses of the Yellow River Deltaic Tidal Flat[J]. Acta Sedimentologica Sinica, 2023,41(3): 748-762.
[20] 王媛媛,王学芹,胡斌. 黄河三角洲潮坪环境中现代生物遗迹组成与分布特征[J]. 沉积学报,2019,37(6):1244-1257.

Wang Yuanyuan, Wang Xueqin, Hu Bin. The composition and distribution characteristics of biogenic sedimentary Structures in tidal flat of Yellow River Delta[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1244-1257.
[21] 袁萍,毕乃双,吴晓,等. 现代黄河三角洲表层沉积物的空间分布特征[J]. 海洋地质与第四纪地质,2016,36(2):49-57.

Yuan Ping, Bi Naishuang, Wu Xiao, et al. Surface sediments at the subaqueous Yellow River Delta: Classification and distribution[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 49-57.
[22] 张少同,贾永刚,刘晓磊,等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质,2016,36(6):33-44.

Zhang Shaotong, Jia Yonggang, Liu Xiaolei, et al. Feature and mechanism of sediment dynamic changing processes in the modern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 33-44.
[23] Ji H Y, Pan S Q, Chen S L. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425: 106210.
[24] Kong D X, Miao C Y, Borthwick A G L, et al. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011[J]. Journal of Hydrology, 2015, 520: 157-167.
[25] 白雪莘,张卫国,董艳,等. 长江三角洲全新世地层中潮滩沉积磁性特征及其古环境意义[J]. 沉积学报,2016,34(6):1165-1175.

Bai Xuexin, Zhang Weiguo, Dong Yan, et al. Magnetic properties of Holocene tidal flats in the Yangtze Delta and their paleoenvironmental implications[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1165-1175.
[26] 范代读,李从先. 长江三角洲泥质潮坪沉积的韵律性及保存率[J]. 海洋通报,2000,19(6):34-41.

Fan Daidu, Li Congxian. Lamination and preservation rate of mudflat deposition on the Changjiang Delta[J]. Marine Science Bulletin, 2000, 19(6): 34-41.
[27] 申江,常华进,曹广超,等. 长江三角洲全新世沉积物光释光测年研究[J]. 盐湖研究,2020,28(4):29-40.

Shen Jiang, Chang Huajin, Cao Guangchao, et al. OSL dating of Holocene sediments in the Yangtze River Delta[J]. Journal of Salt Lake Research, 2020, 28(4): 29-40.
[28] 王海邻,王长征,宋慧波,等. 杭州湾庵东滨岸潮间带现代沉积物中的生物遗迹特征[J]. 沉积学报,2017,35(4):714-729.

Wang Hailin, Wang Changzheng, Song Huibo, et al. Characte-ristic of biogenic traces in the modern sediments of intertidal flat in Andong area, Hangzhou Bay[J]. Acta Sedimentologica Sinica, 2017, 35(4): 714-729.
[29] 王海邻,胡斌,宋慧波. 山东青岛和日照滨岸潮间带现代生物遗迹组成与分布特征[J]. 古地理学报,2017,19(4):663-676.

Wang Hailin, Hu Bin, Song Huibo. Composition and distribution characteristics of modern biogenic traces in intertidal flat in Qingdao and Rizhao area, Shandong province[J]. Journal of Palaeogeography, 2017, 19(4): 663-676.
[30] 胡斌,张白梅,王海邻,等. 现代滦河三角洲沉积中的生物遗迹[J]. 河南理工大学学报(自然科学版),2015,34(2):185-191.

Hu Bin, Zhang Baimei, Wang Hailin, et al. Neoichnology in modern Luanhe delta deposits[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(2): 185-191.
[31] Gingras M K, MacEachern J A, Dashtgard S E. Process ichnology and the elucidation of physico-chemical stress[J]. Sedimentary Geology, 2011, 237(3/4): 115-134.
[32] Hong E, Huang T C, Yu H S. Morphology and dynamic sedimentology in front of the retreating Tsengwen Delta, southwestern Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2004, 15(4): 565-587.
[33] 范代读,李从先,陈美发,等. 长江三角洲泥质潮坪沉积间断的定量分析[J]. 海洋地质与第四纪地质,2001,21(4):1-6.

Fan Daidu, Li Congxian, Chen Meifa, et al. Quantitative analyses on diastems of the mudflat deposits in the Yangtze River Delta[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 1-6.
[34] 金振奎,高白水,李桂仔,等. 三角洲沉积模式存在的问题与讨论[J]. 古地理学报,2014,16(5):569-580.

Jin Zhenkui, Gao Baishui, Li Guizai, et al. Problems and discussions about delta depositional models[J]. Journal of Palaeogeography, 2014, 16(5): 569-580.
[35] 李凯,易旺. 贵州省盘县地区龙潭组沉积特征及展布规律[J]. 天然气技术与经济,2019,13(2):21-24,61.

Li Kai, Yi Wang. Sedimentary characteristics and distribution laws of Longtan Formation in Panxian county of Guizhou province, China[J]. Natural Gas Technology and Economy, 2019, 13(2): 21-24, 61.
[36] 张素梅,张玉林,郭亚亚,等. 黄河北煤田潮坪沉积体系及成煤作用[J]. 中国煤炭地质,2014,26(11):23-25.

Zhang Sumei, Zhang Yulin, Guo Yaya, et al. Tidal flat sedimentary system and coal-forming in Huanghebei coalfield[J]. Coal Geology of China, 2014, 26(11): 23-25.
[37] 王珊珊. 珠江三角洲和近岸河口海域现代沉积环境及晚更新世以来的环境演变[D]. 青岛:中国海洋大学,2008.

Wang Shanshan. Present sedimentary environments and environment evolvement since Late Pleistocene for the Pearl River Delta and intracoastal estuary and sea area[D]. Qingdao: Ocean University of China, 2008.
[38] 吴超羽,韦惺. 从溺谷湾到三角洲:现代珠江三角洲形成演变研究辨析[J]. 海洋学报,2021,43(1):1-26.

Wu Chaoyu, Wei Xing. From drowned valley to delta: Discrimination and analysis on issues of the formation and evolution of the Zhujiang River Delta[J]. Haiyang Xuebao, 2021, 43(1): 1-26.
[39] 袁菲,何用,许劼婧. 近期珠江三角洲地形演变特征及趋势[J]. 泥沙研究,2022,47(1):59-64.

Yuan Fei, He Yong, Xu Jiejing. Recent topographical evolution characteristics and trend of the Pearl River Delta[J]. Journal of Sediment Research, 2022, 47(1): 59-64.
[40] 赵焕庭. 珠江河口演变的基本过程[J]. 热带海洋,1984,3(4):1-9.

Zhao Huanting. The general evolution process of Zhujiang (Pearl River) Mouth[J]. Tropic Oceanology, 1984, 3(4): 1-9.
[41] 赵焕庭. 珠江三角洲的水文特征[J]. 热带海洋,1983,2(2):108-117.

Zhao Huanting. Hydrological characteristics of the Zhujiang (Pearl River) Delta[J]. Tropic Oceanology, 1983, 2(2): 108-117.
[42] 赵焕庭. 珠江河口的水文和泥沙特征[J]. 热带地理,1989,9(3):201-212.

Zhao Huanting. Hydrological and sedimentary characteristics of the Pearl River Estuary[J]. Tropical Geography, 1989, 9(3): 201-212.
[43] 陈耀泰. 珠江口现代沉积速率与沉积环境[J]. 中山大学学报(自然科学版),1992,31(2):100-107.

Chen Yaotai. Modern sedimentary velocity and sedimetary environment in the Pearl River Mouth[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1992, 31(2): 100-107.
[44] 龙云作,霍春兰,司桂贤,等. 对珠江三角洲沉积特征和沉积模式的一些认识[J]. 海洋地质与第四纪地质,1985,5(4):49-57.

Long Yunzuo, Huo Chunlan, Si Guixian, et al. On sedimentary characteristics and model of Zhujiang River Dalta[J]. Marine Geology & Quaternary Geology, 1985, 5(4): 49-57.
[45] 龙云作,霍春兰,杨胜雄. 珠江三角洲现代沉积环境及沉积特征[J]. 海洋地质与第四纪地质,1989,9(4):15-27.

Long Yunzuo, Huo Chunlan, Yang Shengxiong. Modern sedimentary environment and characteristics of the Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1989, 9(4): 15-27.
[46] 张光威,马道修,徐明广,等. 珠江口现代沉积物构造特征及其沉积环境[J]. 海洋地质与第四纪地质,1988,8(3):71-83.

Zhang Guangwei, Ma Daoxiu, Xu Mingguang, et al. Sedimentary environments and structures of modern sediments in the mouth of Zhujiang River[J]. Marine Geology & Quaternary Geology, 1988, 8(3): 71-83.
[47] 时硕,吉俊熹,王张华. 珠江三角洲全新世沉积物C/N和δ13C变化及对甘蔗种植业的指示[J]. 第四纪研究,2022,42(2):397-411.

Shi Shuo, Ji Junxi, Wang Zhanghua. Holocene varia-bility of bulk organic C/N and δ13C and implications for the sugarcane cultivation[J]. Quaternary Sciences, 2022, 42(2): 397-411.
[48] 韦惺,吴超羽. 珠江三角洲沉积体与河网干流河道的形成发育[J]. 海洋学报,2018,40(7):66-78.

Wei Xing, Wu Chaoyu. The formation and development of the deposition bodies and main channels in the Zhujiang River Delta[J]. Haiyang Xuebao, 2018, 40(7): 66-78.
[49] 张绍轩,汤永杰,郑翠美,等. 珠江三角洲全新世海—陆沉积模式转换及其年代[J]. 海洋地质与第四纪地质,2020,40(5):107-117.

Zhang Shaoxuan, Tang Yongjie, Zheng Cuimei, et al. Holocene sedimentary environment transform and onset time of Pearl River Delta progradation[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 107-117.
[50] 陈耀泰. 珠江入海泥沙的浓度和成分特征及其沉积扩散趋势[J]. 中山大学学报(自然科学版),1991,30(1):105-113.

Chen Yaotai. On features of density and ingredient as well as trend of the deposit and the spread of the sediment from Pearl River into the sea[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1991, 30(1): 105-113.
[51] 周青伟,马道修,徐明广,等. X射线照像在珠江三角洲现代沉积环境调查中的应用及其意义[J]. 海洋地质与第四纪地质,1987,7(3):79-89.

Zhou Qingwei, Ma Daoxiu, Xu Mingguang, et al. Application of X-ray radiography in modern sedimentary environmental investigations in the Zhujiang River Delta and its significance[J]. Marine Geology & Quaternary Geology, 1987, 7(3): 79-89.
[52] 马道修,徐明广,周青伟,等. 珠江三角洲沉积相序[J]. 海洋地质与第四纪地质,1988,8(1):43-53.

Ma Daoxiu, Xu Mingguang, Zhou Qingwei, et al. Sedimentary facies sequences of the Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1988, 8(1): 43-53.
[53] Buatois L A, Santiago N, Herrera M, et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline[J]. Sedimentology, 2012, 59(5): 1568-1612.
[54] Netto R G, Tognoli F M W, Assine M L, et al. Crowded Rosselia ichnofabric in the Early Devonian of Brazil: An example of strategic behavior[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 107-113.
[55] MacEachern J A, Bann K L, Bhattacharya J P, et al. Ichnology of deltas: Organism responses to the dynamic interplay of rivers, waves, storms, and tides[M]//Giosan L, Bhattacharya J P. River deltas: Concepts, models, and examples. Tulsa: Society for Sedimentary Geology, 2005.
[56] Miguez-Salas O, Rodríguez-Tovar F J, de Weger W. Macaronichnus and contourite depositional settings: Bottom currents and nutrients as coupling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109639.
[57] Quaye J A, Jiang Z X, Zhou X W. Bioturbation influence on reser-voir rock quality: A case study of well Bian-5 from the Second member Paleocene Funing Formation in the Jinhu Sag, Subei Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1165-1173.
[58] de Jesus Gomes de Sousa M, Sales Viana M S, Paula Moreira J V, et al. Arthrophycus alleghaniensis Harlan, 1831 in the Tianguá Formation, Brazil (Silurian of the Parnaíba Basin)[J]. Journal of South American Earth Sciences, 2019, 92: 523-530.
[59] Melchor R N. Application of vertebrate trace fossils to palaeoenvironmental analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 439: 79-96.
[60] O’Connell B, Dorsey R J, Hasiotis S T, et al. Mixed carbonate-siliciclastic tidal sedimentation in the Miocene to Pliocene Bouse Formation, palaeo-gulf of California[J]. Sedimentology, 2021, 68(3): 1028-1068.
[61] Hofmann R, Mángano M G, Elicki O, et al. Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the middle Cambrian (Stage 5) of Jordan[J]. Journal of Paleontology, 2012, 86(6): 931-955.
[62] Bradshaw M A. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (Lower Beacon Supergroup), Antarctica[J]. New Zealand Journal of Geology and Geophysics, 1981, 24(5/6): 615-652.
[63] Desai B G, Biswas S K. Postrift deltaic sedimentation in western Kachchh Basin: Insights from ichnology and sedimentology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 104-124.
[64] Flaig P P, Hasiotis S T, Jackson A M. An Early Permian, paleopolar, postglacial, river-dominated deltaic succession in the Mackellar-Fairchild formations at Turnabout Ridge, Central Transantarctic Mountains, Antarctica[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 241-265.