[1] Sun D Y, Tang J H, He Y X, et al. Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River mouth, northeast China[J]. Organic Geochemistry, 2018, 118: 89-102.
[2] Li X Z, Liu W G, Xu L M. Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai-Tibet Plateau): Implications for lake evolution in arid areas[J]. Chemical Geology, 2012, 300-301: 88-96.
[3] Wagner B, Melles M, Hahne J, et al. Holocene climate history of Geographical Society Ø, East Greenland-evidence from lake sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(1/2): 45-68.
[4] Krishnamurthy R V, Bhattacharya S K, Kusumgar S. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India[J]. Nature, 1986, 323(6084): 150-152.
[5] 陈英勇,鹿化煜,张恩楼,等. 浑善达克沙地地表沉积物有机碳同位素组成与植被—气候的关系[J]. 第四纪研究,2013,33(2):351-359.

Chen Yingyong, Lu Huayu, Zhang Enlou, et al. The relationship between organic carbon isotopic composition of surface sediment and vegetation-climate in Otindag dune field, northern China[J]. Quaternary Sciences, 2013, 33(2): 351-359.
[6] Deines P. The isotopic composition of reduced organic carbon[M]//Fritz P, Fontes J. Handbook of environmental isotope geochemistry. Amsterdam: Elsevier, 1980: 329-406.
[7] 曹红霞,尚婷,吴海燕,等. 鄂尔多斯盆地东南部马家沟组碳酸盐岩碳氧同位素特征及意义[J]. 西北大学学报(自然科学版),2018,48(4):578-586.

Cao Hongxia, Shang Ting, Wu Haiyan, et al. Characteristics of carbon and oxygen isotopes of carbonate rocks in Majiagou Formation and their implication, southeastern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2018, 48(4): 578-586.
[8] 王宁,刘卫国,徐黎明,等. 青藏高原现代湖泊沉积物碳酸盐矿物氧同位素组成特征及影响因素[J]. 第四纪研究,2008,28(4):591-600.

Wang Ning, Liu Weiguo, Xu Liming, et al. Oxygen isotopic compositions of carbonates of modern surface lacustrine sediments and their affecting factors in Tibet Plateau[J]. Quaternary Sciences, 2008, 28(4): 591-600.
[9] Contreras S, Werne J P, Araneda A, et al. Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes[J]. Science of the Total Environment, 2018, 630: 878-888.
[10] Blagodatskaya E, Yuyukina T, Blagodatsky S, et al. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization[J]. Soil Biology and Biochemistry, 2011, 43(1): 159-166.
[11] 王国安. 稳定碳同位素在第四纪古环境研究中的应用[J]. 第四纪研究,2003,23(5):471-484.

Wang Guo'an. Application of stable carbon isotope for paleoenvironmental research[J]. Quaternary Sciences, 2003, 23(5): 471-484.
[12] 饶志国,郭文康,薛骞,等. 黄土高原西部地区黄土地层有机质主要来源分析[J]. 第四纪研究,2015,35(4):819-827.

Rao Zhiguo, Guo Wenkang, Xue Qian, et al. Assessment on primary provenance of organic matter in loess/paleosol sequences in the western Chinese Loess Plateau: Local biomass or bedrocks in dust source regions?[J]. Quaternary Sciences, 2015, 35(4): 819-827.
[13] IPCC. 2021: Summary for policymakers[M]//Masson-Delmotte V P, Zhai A, Pirani S L, et al. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
[14] Chen S Q, Liu J B, Wang X, et al. Holocene dust storm variations over northern China: Transition from a natural forcing to an anthropogenic forcing[J]. Science Bulletin, 2021, 66(24): 2516-2527.
[15] Pei W Q, Wan S M, Clift P D, et al. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP[J]. Quaternary Science Reviews, 2020, 230: 106165.
[16] Pirnia A, Golshan M, Darabi H, et al. Using the Mann-Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities[J]. Journal of Water and Climate Change, 2019, 10(4): 725-742.
[17] Garcin Y, Deschamps P, Ménot G, et al. Early anthropogenic impact on western central African rainforests 2,600 y ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13): 3261-3266.
[18] 杨林海,周杰,何忠,等. 国内全新世环境变化与人类活动关系研究略评[J]. 盐湖研究,2009,17(2):63-68.

Yang Linhai, Zhou Jie, He Zhong, et al. Review of research on correlation of Holocene environmental change and human activities in China[J]. Journal of Salt Lake Research, 2009, 17(2): 63-68.
[19] 姚远,张恩楼,沈吉,等. 云南属都湖流域人类活动的湖泊沉积响应[J]. 海洋地质与第四纪地质,2007,27(5):115-120.

Yao Yuan, Zhang Enlou, Shen Ji, et al. Human activities indicated by lacustrine deposition in the region of Shudu Lake[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 115-120.
[20] Zhao L, Ma C M, Leipe C, et al. Holocene vegetation dynamics in response to climate change and human activities derived from pollen and charcoal records from southeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 644-660.
[21] Li Y Y, Zhou L P, Cui H T. Pollen indicators of human activity[J]. Chinese Science Bulletin, 2008, 53(9): 1281-1293.
[22] Tan Z H, Han Y M, Cao J J, et al. The linkages with fires, vegetation composition and human activity in response to climate changes in the Chinese Loess Plateau during the Holocene[J]. Quaternary International, 2018, 488: 18-29.
[23] Klinge M, Lehmkuhl F, Schulte P, et al. Implications of (reworked) aeolian sediments and paleosols for Holocene environmental change in western Mongolia[J]. Geomorphology, 2017, 292: 59-71.
[24] 田立德,姚檀栋.青藏高原冰芯高分辨率气候环境记录研究进展[J].科学通报,2016,61(09):926-937.

Tian Lide, Yao Tandong. High-resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 2016, 61(9): 926-937.
[25] Yasur G, Ayalon A, Matthews A, et al. Climatic and environmental conditions in the western Galilee, during late Middle and Upper Paleolithic periods, based on speleothems from Manot cave, Israel[J]. Journal of Human Evolution, 2021, 160: 102605.
[26] Koç K, Koşun E, Cheng H, et al. Black carbon traces of human activities in stalagmites from Turkey[J]. Journal of Archaeological Science, 2020, 123: 105255.
[27] 丁伟,庞瑞洺,许清海,等. 中国东部暖温带低山丘陵区表土花粉对人类活动的指示意义[J]. 科学通报,2011,56(11):841-849.

Ding Wei, Pang Ruiming, Xu Qinghai, et al. Surface pollen assemblages as indicators of human impact in the warm temperate hilly areas of eastern China[J]. Chinese Science Bulletin, 2011, 56(11): 841-849.
[28] 崔安宁,马春梅,朱诚,等. 长江三峡库区玉溪遗址的环境与人类活动的孢粉记录[J]. 微体古生物学报,2015,32(2):161-173.

Cui Anning, Ma Chunmei, Zhu Cheng, et al. Pollen records of the Yuxi culture site in the Three Gorges reservoir area, Yangtze River[J]. Acta Micropalaeontologica Sinica, 2015, 32(2): 161-173.
[29] Dong Y J, Wu N Q, Li F J, et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach[J]. Quaternary Science Reviews, 2020, 248: 106579.
[30] 郑曼迪. 人类活动对土壤有机质空间格局影响的研究[D]. 乌鲁木齐:新疆大学,2018.

Zheng Mandi. Study on the effect of human activities on the spatial pattern of soil organic matter[D] Urumqi: Xinjiang University, 2018.
[31] Schumacher B A. Methods for the determination of total organic carbon (TOC) in soils and sediments[R]. Las Vegas: Ecological Risk Assessment Support Center, 2002: 1-23.
[32] 赵满兴,余光美,白二磊,等. 陕北黄土高原植被恢复对土壤理化性状的影响[J]. 中国农学通报,2020,36(25):86-94.

Zhao Manxing, Yu Guangmei, Bai Erlei, et al. Effects of vegetation restoration on soil physicochemical properties in the Loess Plateau of northern Shaanxi[J]. Chinese Agricultural Science Bulletin, 2020, 36(25): 86-94.
[33] 施建平,宋歌. 中国土种数据库—基于第二次土壤普查的全国性土壤数据集[J]. 中国科学数据,2016(2):1-12.

Shi Jianping, Song Ge. Soil type database of China: A nationwide soil dataset based on the second national soil survey[J]. China Scientific Data, 2016(2): 1-12.
[34] Meyers P A, Lallier-Vergés E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345-372.
[35] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289-302.
[36] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870): 156-159.
[37] Sarma V V S S, Arya J, Subbaiah C V, et al. Stable isotopes of carbon and nitrogen in suspended matter and sediments from the Godavari estuary[J]. Journal of Oceanography, 2012, 68(2): 307-319.
[38] Rostad C E, Leenheer J A, Daniel S R. Organic carbon and nitrogen content associated with colloids and suspended particulates from the Mississippi River and some of its tributaries[J]. Environmental Science & Technology, 1997, 31(11): 3218-3225.
[39] Zamanian K, Pustovoytov K, Kuzyakov Y. Pedogenic carbonates: Forms and formation processes[J]. Earth-Science Reviews, 2016, 157: 1-17.
[40] Lal R, Kimble J M, Stewart B A. Global climate change and pedogenic carbonates[M]. Boca Raton: CRC Press, 1999, 135-141.
[41] 周笃珺,马海州,高东林,等. 青海湖南岸全新世黄土地球化学特征及气候环境意义[J]. 中国沙漠,2004,24(2):144-148.

Zhou Dujun, Ma Haizhou, Gao Donglin, et al. Geochemical characteristics and climatic environmental significance of Holocene loess on south Qinghai Lake shore[J]. Journal of Desert Research, 2004, 24(2): 144-148.
[42] Li Y, Zhang C Q, Wang N A, et al. Substantial inorganic carbon sink in closed drainage basins globally[J]. Nature Geoscience, 2017, 10(7): 501-506.
[43] Li Y, Wang Y G, Houghton R A, et al. Hidden carbon sink beneath desert[J]. Geophysical Research Letters, 2015, 42(14): 5880-5887.
[44] Liu J B, Feng W, Zhang Y Q, et al. Abiotic CO2 exchange between soil and atmosphere and its response to temperature[J]. Environmental Earth Sciences, 2015, 73(5): 2463-2471.
[45] 王长庭,王启基,龙瑞军,等. 高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究[J]. 植物生态学报,2004,28(2):240-245.

Wang Changting, Wang Qiji, Long Ruijun, et al. Changes in plant species diversity and productivity along an elevation gradient in an alpine meadow[J]. Chinese Journal of Plant Ecology, 2004, 28(2): 240-245.
[46] 李英年,王勤学,古松,等. 高寒植被类型及其植物生产力的监测[J]. 地理学报,2004,59(1):40-48.

Li Yingnian, Wang Qinxue, Gu Song, et al. Integrated monitoring of alpine vegetation types and its primary production[J]. Acta Geographica Sinica, 2004, 59(1): 40-48.
[47] Smith J L, Halvorson J J, Bolton Jr H. Soil properties and microbial activity across a 500m elevation gradient in a semi-arid environment[J]. Soil Biology and Biochemistry, 2002, 34(11): 1749-1757.
[48] Luizão R C C, Luizão F J, Paiva R Q, et al. Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest[J]. Global Change Biology, 2004, 10(5): 592-600.
[49] 车宗玺,刘贤德,车宗奇,等. 祁连山青海云杉林土壤有机质及氮素的空间分布特征[J]. 水土保持学报,2014,28(5):164-169.

Che Zongxi, Liu Xiande, Che Zongqi, et al. Spatial distribution characteristics of soil organic matter and nitrogen of Picea crassifolia in Qilian Mountains[J]. Journal of Soil and Water Conservation, 2014, 28(5): 164-169.
[50] Wheeler C W, Archer S R, Asner G P, et al. Climatic/edaphic controls on soil carbon/nitrogen response to shrub encroachment in desert grassland[J]. Ecological Applications, 2007, 17(7): 1911-1928.
[51] Were K, Singh B R, Dick Ø B. Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the eastern Mau Forest Reserve, Kenya[J]. Journal of Geographical Sciences, 2016, 26(1): 102-124.
[52] 田洋洋. 星云湖表层沉积物有机质空间分布特征及其环境指示意义[D]. 昆明:云南师范大学,2020.

Tian Yangyang. Spatial distribution characteristics and environmental indications of organic matter in surface sediment of Xingyun Lake[D]. Kunming: Yunnan Normal University, 2020.
[53] 雷学明,段洪浪,刘文飞,等.鄱阳湖湿地碟形湖泊沿高程梯度土壤养分及化学计量研究[J].土壤,2017,49(1):40-48.

Lei Xueming, Duan Honglang, Liu Wenfei, et al. Soil nutrients and stoichiometry along elevation gradients in shallow-lakes of Poyang Lake wetland[J]. Soils, 2017, 49(1): 40-48.
[54] 李龙,姚云峰,秦富仓,等. 黄花甸子流域土壤全氮含量空间分布及其影响因素[J]. 应用生态学报,2015,26(5):1306-1312.

Li Long, Yao Yunfeng, Qin Fucang, et al. Spatial distribution pattern of soil nitrogen in Huanghuadianzi watershed and related affecting factors[J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1306-1312.
[55] 张瑶瑶,冷若琳,崔霞,等. 甘南州高寒草地土壤氮磷空间分布特征[J]. 草业学报,2018,27(12):12-21.

Zhang Yaoyao. Leng Ruolin, Cui Xia,et al. Spatial distribution characteristics of nitrogen and phosphorus in soil on the Gannan plateau[J]. Acta Prataculturae Sinica, 2018, 27(12): 12-21.
[56] 吕厚远,顾兆炎,吴乃琴,等. 海拔高度的变化对青藏高原表土δ13Corg的影响[J]. 第四纪研究,2001,21(5):399-406.

Houyuan Lü, Gu Zhaoyan, Wu Naiqin, et al. Effect of altitude on the organic carbon-isotope composition of modern surface soils from Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2001, 21(5): 399-406.
[57] 唐志红,尉秋实,刘虎俊,等. 祁连山东段高寒植被群落特征及其与地形气候因子关系研究[J]. 生态学报,2020,40(1):223-232.

Tang Zhihong, Yu Qiushi, Liu Hujun, et al. Characte-ristics of alpine vegetation community and its relationship to topographic climate factors in the eastern Qilian Mountain[J]. Acta Ecologica Sinica, 2020, 40(1): 223-232.
[58] 綦琳. 青藏高原东缘表土有机碳同位素分布特征及其主控因素研究[D]. 北京:中国地质大学(北京),2017.

Qi Lin. Distribution of organic carbon isotope composition for modern soils from the eastern margin of the Tibetan Plateau and its main controlling factors[D]. Beijing: China University of Geoscience (Beijing), 2017.
[59] 刘哲,李奇,陈懂懂,等. 青藏高原高寒草甸物种多样性的海拔梯度分布格局及对地上生物量的影响[J]. 生物多样性,2015,23(4):451-462.

Liu Zhe, Li Qi, Chen Dongdong, et al. Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau[J]. Biodiversity Science, 2015, 23(4): 451-462.
[60] Woodward F I, Bazzaz F A. The responses of stomatal density to CO2 partial pressure[J]. Journal of Experimental Botany, 1988, 39(12): 1771-1781.
[61] 郭文康. 中国季风边缘区、青藏高原和新疆干旱区有机碳同位素现代过程研究[D]. 兰州:兰州大学,2016.

Guo Wenkang. Modern-process study on organic carbon isotopes in monsoonal margin, Qinghai-Tibet Plateau and Xinjiang of China[D]. Lanzhou: Lanzhou University, 2016.
[62] 李相博,陈践发,张平中,等. 青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J]. 沉积学报,1999,17(2):325-329.

Li Xiangbo, Chen Jianfa, Zhang Pingzhong, et al. The characteristics of carbon isotope composition of modern plants over Qinghai-Tibet Plateau (NE) and its climatic information[J]. Acta Sedimentologica Sinica, 1999, 17(2): 325-329.
[63] 饶志国,朱照宇,贾国东,等. 环北太平洋地区现代植被中C3/C4植物相对丰度与气候条件关系研究[J]. 科学通报,2010,55(12):1134-1140.

Rao Zhiguo, Zhu Zhaoyu, Jia Guodong, et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific[J]. Chinese Science Bulletin, 2010, 55(12): 1134-1140.
[64] Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China[J]. Global Change Biology, 2003, 9(3): 305-315.
[65] 刘媛媛,马进泽,卜兆君,等. 地理来源与生物化学属性对泥炭地植物残体分解的影响[J]. 植物生态学报,2018,42(7):713-722.

Liu Yuanyuan, Ma Jinze, Bu Zhaojun, et al. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland[J]. Chinese Journal of Plant Ecology, 2018, 42(7): 713-722.
[66] 魏淑贞,张伟华. 内蒙古草原经度地带性土壤地球化学特征研究[J]. 地球科学前沿,2015,5(3):160-170.

Wei Shuzhen, Zhang Weihua. Inner Mongolia grassland longitude zonal soil geochemistry[J]. Advances in Geosciences, 2015, 5(3): 160-170.
[67] Li Y, Xu L M. Asynchronous Holocene Asian monsoon vapor transport and precipitation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 195-200.
[68] 蒋友严,杜文涛,黄进,等. 2000—2015年祁连山植被变化分析[J]. 冰川冻土,2017,39(5):1130-1136.

Jiang Youyan, Du Wentao, Huang Jin, et al. Analysis of vegetation changes in the Qilian Mountains during 2000-2015[J]. Journal of Glaciology and Geocryology, 2017, 39(5): 1130-1136.
[69] 任娇. 祁连山区域人工增雨的适宜条件及影响因素分析[D]. 兰州:兰州大学,2020.

Ren Jiao. Analysis of the suitable conditions and impact factors for precipitation enhancement in Qilian Mountain[D]. Lanzhou: Lanzhou University, 2020.
[70] 汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报,1985,40(4):323-332.

Tang Maocang. The distribution of precipitation in mountain Qilian (Nanshan)[J]. Acta Geographica Sinica, 1985, 40(4): 323-332.
[71] 阳坤,何杰. 中国区域地面气象要素驱动数据集(1979—2018)[DB]. 国家青藏高原科学数据中心,2019.

Yang Kun, He Jie. China meteorological forcing dataset (1979-2018)[DB]. National Qinghai-Tibet Plateau Scientific Data Center, 2019.
[72] 杨敏,杨飞,杨仁敏,等. 祁连山中段土壤有机碳剖面垂直分布特征及其影响因素[J]. 土壤,2017,49(2):386-392.

Yang Min, Yang Fei, Yang Renmin, et al. Profile vertical distribution modes of SOC and influential factors in Qilian Mountains[J]. Soils, 2017, 49(2): 386-392.
[73] 张萌萌,刘梦云,常庆瑞,等. 1985—2015年陕西黄土台塬表层土壤有机碳空间分布[J]. 自然资源学报,2018,33(11):2032-2045.

Zhang Mengmeng, Liu Mengyun, Chang Qingrui, et al. Spatial distribution of organic carbon in topsoil of the loess tableland in Shaanxi province during 1985-2015[J]. Journal of Natural Resources, 2018, 33(11): 2032-2045.
[74] 杨新宇,林笠,李颖,等. 青藏高原高寒草甸土壤物理性质及碳组分对增温和降水改变的响应[J]. 北京大学学报(自然科学版),2017,53(4):765-774.

Yang Xinyu, Lin Li, Li Ying, et al. Effects of warming and altered precipitation on soil physical properties and carbon pools in a Tibetan alpine grassland[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 765-774.
[75] Rui Y C, Wang S P, Xu Z H, et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China[J]. Journal of Soils and Sediments, 2011, 11(6): 903-914.
[76] Zhao Y, Wu F L, Fang X M, et al. Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance[J]. Quaternary International, 2017, 454: 45-55.
[77] 武志杰. 人类生产活动对土壤生态系统的影响[J]. 生态学杂志,1993,12(4):47-51.

Wu Zhijie. Influence of human activity on soil ecosystem[J]. Chinese Journal of Ecology, 1993, 12(4): 47-51.
[78] 韦应莉,曹文侠,刘玉祯. 不同放牧强度和围封对高寒灌丛草地土壤微生物量的影响[J]. 草原与草坪,2018,38(5):1-7.

Wei Yingli, Cao Wenxia, Liu Yuzhen. Effect of grazing intensity and fencing on soil microbial biomass in alpine shrubland[J]. Grassland and Turf, 2018, 38(5): 1-7.
[79] 穆振侠,任贤月,俞雪琴,等. 特定条件下农业灌溉用水对地下水水量与水质的影响研究[J]. 干旱区资源与环境,2019,33(3):112-117.

Mu Zhenxia, Ren Xianyue, Yu Xueqin, et al. Effects of agricultural irrigation on groundwater quantity and quality under specific conditions[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 112-117.
[80] Zhu B B, Li Z B, Li P, et al. Soil erodibility, microbial biomass, and physical-chemical property changes during long-term natural vegetation restoration: A case study in the Loess Plateau, China[J]. Ecological Research, 2010, 25(3): 531-541.
[81] 王增丽. 秸秆不同处理还田方式对土壤理化特性和作物生长效应的影响[D]. 杨凌:西北农林科技大学,2012.

Wang Zengli. Effects of different straw incorporation manners on soil physical and chemical properties and crop growth[D]. Yangling: Northwest A&F University, 2012.
[82] 李东坡,武志杰,陈利军. 有机农业施肥方式对土壤微生物活性的影响研究[J]. 中国生态农业学报,2005,13(2):99-101.

Li Dongpo, Wu Zhijie, Chen Lijun. Influence of fertilizing modes of organic agriculture on the soil microbial activities[J]. Chinese Journal of Eco-Agriculture, 2005, 13(2): 99-101.
[83] 赵晓波. 河姆渡周边遗址原始稻作农业的研究[J]. 农业考古,1998(1):131-137.

Zhao Xiaobo. Research on primitive rice farming at the site around Hemudu[J]. Agricultural Archaeology, 1998(1): 131-137.
[84] Awe J J. Maya cities and sacred caves: A guide to the Maya sites of Belize[M]. Cubola, 2006.
[85] Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (north-central China): Indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59: 18-29.
[86] 何翔宇,吴克宁,查理思,等. 古人类活动对土壤理化性质的影响:以河南仰韶村文化遗址为例[J]. 土壤,2017,49(5):1038-1048.

He Xiangyu, Wu Kening, Zha Lisi, et al. Indicative characteristics of soil in ancient human cultural sites: A case study of Yangshao village cultural relic site, Henan province[J]. Soils, 2017, 49(5): 1038-1048.
[87] Dotterweich M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation:A global synopsis[J]. Geomorphology, 2013, 201: 1-34.
[88] 谭其骧. 何以黄河在东汉以后会出现一个长期安流的局面:从历史上论证黄河中游的土地合理利用是消弭下游水害的决定性因素[J]. 学术月刊,1962(2):23-35.

Tan Qixiang. Why does the Yellow River have a long-term stable state after the eastern Han Dynasty[J]. Academic Monthly, 1962(2): 23-35.
[89] 桑广书. 黄土高原历史时期地貌与土壤侵蚀演变研究[D]. 西安:陕西师范大学,2003.

Sang Guangshu. The evolutionary process of the landform and soil erosion during historical period in Loess Plateau[D]. Xi'an: Shaanxi Normal University, 2003.
[90] 葛全胜,方修琦,张雪芹,等. 20世纪下半叶中国地理环境的巨大变化:关于全球环境变化区域研究的思考[J]. 地理研究,2005,24(3):345-358.

Ge Quansheng, Fang Xiuqi, Zhang Xueqin, et al. Remarkable environmental changes in China during the past 50 years: A case study on regional research of global environmental change[J]. Geographical Research, 2005, 24(3): 345-358.
[91] 周涛,史培军,王绍强. 气候变化及人类活动对中国土壤有机碳储量的影响[J]. 地理学报,2003,58(5):727-734.

Zhou Tao, Shi Peijun, Wang Shaoqiang. Impacts of climate change and human activities on soil carbon storage in China[J]. Acta Geographica Sinica, 2003, 58(5): 727-734.
[92] 秦景秀,郝兴明,张颖,等. 气候变化和人类活动对干旱区植被生产力的影响[J]. 干旱区地理,2020,43(1):117-125.

Qin Jingxiu, Hao Xingming, Zhang Ying, et al. Effects of climate change and human activities on vegetation productivity in arid areas[J]. Arid Land Geography, 2020, 43(1): 117-125.
[93] 李并成. 河西走廊历史时期沙漠化研究[M]. 北京:科学出版社,2003.

Li Bingcheng. Research on desertification in the historical period of Hexi Corridor[M]. Beijing: Science Press, 2003.
[94] 陈京华,贾文雄,赵珍,等. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展,2015,30(7):834-845.

Chen Jinghua, Jia Wenxiong, Zhao Zhen, et al. Research on temporal and spatial variation characteristics of vegetation cover of Qilian Mountains from 1982 to 2006[J]. Advances in Earth Science, 2015, 30(7): 834-845.
[95] 龚雪蛟,秦琳,刘飞,等. 有机类肥料对土壤养分含量的影响[J]. 应用生态学报,2020,31(4):1403-1416.

Gong Xuejiao, Qin Lin, Liu Fei, et al. Effects of organic manure on soil nutrient content: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1403-1416.
[96] Zhao Y, Feng Q, Yang H D. Soil salinity distribution and its relationship with soil particle size in the lower reaches of Heihe River, northwestern China[J]. Environmental Earth Sciences, 2016, 75(9): 810.