[1] 刘洋,吴兴,刘正豪,等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评,2021,52(4):416-436.

Liu Yang, Wu Xing, Liu Zhenghao, et al. Geological evolution and habitable environment of Mars: Progress and prospects[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(4): 416-436.
[2] Edgar L A, Fedo C M, Gupta S, et al. A lacustrine paleoenvironment recorded at Vera Rubin ridge, Gale crater: Overview of the sedimentology and stratigraphy observed by the Mars science laboratory curiosity rover[J]. Journal of Geophysical Research: Planets, 2020, 125(3): e2019JE006307.
[3] Salese F, Pondrelli M, Neeseman A, et al. Geological evidence of planet-wide groundwater system on Mars[J]. Journal of Geophysical Research: Planets, 2019, 124(2): 374-395.
[4] Grotzinger J P, Sumner D Y, Kah L C, et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169): 1242777.
[5] Kossacki K J, Markiewicz W J. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies[J]. Icarus, 2010, 210(1): 83-91.
[6] Carter J, Loizeau D, Mangold N, et al. Widespread surface weathering on early Mars: A case for a warmer and wetter climate[J]. Icarus, 2015, 248: 373-382.
[7] Nimmo F, Tanaka K. Early crustal evolution of Mars[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 133-161.
[8] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010:4-31.

Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010: 4-31.
[9] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:5-34.

Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 5-34.
[10] Balme M R, Gupta S, Davis J M, et al. Aram dorsum: An extensive mid-Noachian age fluvial depositional system in Arabia terra, Mars[J]. Journal of Geophysical Research: Planets, 2020, 125(5): e2019JE006244.
[11] Loizeau D, Werner S C, Mangold N, et al. Chronology of deposition and alteration in the Mawrth Vallis region, Mars[J]. Planetary and Space Science, 2012, 72(1): 31-43.
[12] Morgan A M, Howard A D, Hobley D E J, et al. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert[J]. Icarus, 2014, 229: 131-156.
[13] Grotzinger J P, Arvidson R E, Bell III J F, et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars[J]. Earth and Planetary Science Letters, 2005, 240(1): 11-72.
[14] Squyres S W, Knoll A H. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars[J]. Earth and Planetary Science Letters, 2005, 240(1): 1-10.
[15] Woo J M Y, Genda H, Brasser R, et al. Mars in the aftermath of a colossal impact[J]. Icarus, 2019, 333: 87-95.
[16] McCubbin F M, Smirnov A, Nekvasil H, et al. Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian[J]. Earth and Planetary Science Letters, 2010, 292(1/2): 132-138.
[17] Hurowitz J A, McLennan S M. A ~ 3.5 Ga record of water-limited, acidic weathering conditions on Mars[J]. Earth and Planetary Science Letters, 2007, 260(3/4): 432-443.
[18] Fukushi K, Sekine Y, Rampe E B. Reconstruction of pH, redox condition, and concentrations of major components in ancient liquid water from the Karasburg member, Murray Formation, Gale crater, Mars[J]. Geochimica et Cosmochimica Acta, 2022, 325: 129-151.
[19] 吴胜和,冯文杰,印森林,等. 冲积扇沉积构型研究进展[J]. 古地理学报,2016,18(4):497-512.

Wu Shenghe, Feng Wenjie, Yin Senlin, et al. Research advances in alluvial fan depositional architecture[J].Journal of Palaeogeography, 2016,18(4): 497-512.
[20] 靳军,刘大卫,纪友亮,等. 砾质辫状河型冲积扇岩相类型、成因及分布规律:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 沉积学报,2019,37(2):254-267.

Jin Jun, Liu Dawei, Ji Youliang, et al. Research on lithofacies types, cause mechanisms and distribution of a gravel braided-river alluvial fan: A case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 254-267.
[21] Hobbs S W, Paull D J, Clarke J D A. A hydrological analysis of terrestrial and Martian gullies: Implications for liquid water on Mars[J]. Geomorphology, 2014, 226: 261-277.
[22] Johnsson A, Reiss D, Hauber E, et al. Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars[J]. Icarus, 2014, 235: 37-54.
[23] Heldmann J L, Conley C A, Brown A J, et al. Possible liquid water origin for Atacama Desert mudflow and recent gully deposits on Mars[J]. Icarus, 2010, 206(2): 685-690.
[24] Galofre A G, Jellinek A M, Osinski G R. Valley formation on early Mars by subglacial and fluvial erosion[J]. Nature Geoscience, 2020, 13(10): 663-668.
[25] Masson P, Carr M H, Costard F, et al. Geomorphologic evidence for liquid water[J]. Space Science Review, 2001, 96(1/2/3/4): 333-364.
[26] Ramirez R M, Craddock R A. The geological and climatological case for a warmer and wetter early Mars[J]. Nature Geoscience, 2018, 11(4): 230-237.
[27] Birch S P D, Hayes A G, Howard A D, et al. Alluvial fan morphology, distribution and formation on Titan[J]. Icarus, 2016, 270: 238-247.
[28] Diniega S, Bramson A M, Buratti B, et al. Modern Mars’geomorphological activity, driven by wind, frost, and gravity[J]. Geomorphology, 2021, 380: 107627.
[29] Amy L, Dorrell R. Equilibrium sediment transport, grade and discharge for suspended-load-dominated flows on Earth, Mars and Titan[J]. Icarus, 2021, 360: 114243.
[30] Schumm S A. The fluvial system[M]. New York: John Wiley & Sons, 1977.
[31] 张元福,戴鑫,王敏,等. 河流扇的概念、特征及意义[J]. 石油勘探与开发,2020,47(5):947-957.

Zhang Yuanfu, Dai Xin, Wang Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5): 947-957.
[32] Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183.
[33] Fassett C I, Head III J W. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology[J]. Icarus, 2008, 198(1): 37-56.
[34] Malin M C, Edgett K S. Evidence for persistent flow and aqueous sedimentation on early Mars[J]. Science, 2003, 302(5652): 1931-1934.
[35] Seybold H J, Kite E, Kirchner J W. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate[J]. Science Advances, 2018, 4(6): eaar6692.
[36] Dickson J L, Head J W, Goudge T A, et al. Recent climate cycles on Mars: Stratigraphic relationships between multiple generations of gullies and the latitude dependent mantle[J]. Icarus, 2015, 252: 83-94.
[37] Fassett C I, Head III J W. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology[J]. Icarus, 2008, 198(1): 37-56.
[38] Ehlmann B L, Mustard J F, Murchie S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479(7371): 53-60.
[39] Nemec W, Steel R J, Gjelberg J, et al. Exhumed rotational slides and scar infill features in a Cretaceous delta front, eastern Spitsbergen[J]. Polar Research, 1988, 6(1): 105-112.
[40] Grant J A, Irwin III R P, Grotzinger J P, et al. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars[J]. Geology, 2008, 36(3): 195-198.
[41] Malin M C, Edgett K S. Evidence for persistent flow and aqueous sedimentation on early Mars[J]. Science, 2003, 302(5652): 1931-1934.
[42] Broz A P. Organic matter preservation in ancient soils of Earth and Mars[J]. Life, 2020, 10(7): 113.
[43] Thomas P C, Malin M C, Edgett K S, et al. North-south geological differences between the residual polar caps on Mars[J]. Nature, 2000, 404(6774): 161-164.
[44] 张昌民,胡威,朱锐,等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏,2017,29(3):1-9.

Zhang Changmin, Hu Wei, Zhu Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3): 1-9.
[45] 高崇龙,纪友亮,靳军,等. 阵发性洪水控制的河流型冲积扇沉积特征及沉积演化模式:以和什托洛盖盆地北缘现代白杨冲积扇为例[J]. 石油学报,2020,41(3):310-328.

Gao Chong- long, Ji Youliang, Jin Jun, et al. Sedimentary characteristics and evolution model of fluvial fan dominated by intermittent flood flows: A case study of Baiyang alluvial fan within the northern margin of Heshituoluogai Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 310-328.
[46] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.