[1] 王霄鹏,袁训来. 远古世界的分子窗口[J]. 科学通报,2019,64(22):2279-2284.

Wang Xiaopeng, Yuan Xunlai. A molecular window to the primeval world[J]. Chinese Science Bulletin, 2019, 64(22): 2279-2284.
[2] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
[3] Bobrovskiy I, Hope J M, Ivantsov A, et al. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals[J]. Science, 2018, 361(6408): 1246-1249.
[4] Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999, 400(6744): 554-557.
[5] 周树青,黄海平,林畅松,等. 生物标志化合物、早期生命和古环境[J]. 地质论评,2007,53(3):389-396.

Zhou Shuqing, Huang Haiping, Lin Changsong, et al. Biomarker, earlier life and the concurrent environment[J]. Geological Review, 2007, 53(3): 389-396.
[6] Love G D, Zumberge J A, Cárdenas P, et al. Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils[J]. Nature Ecology & Evolution, 2020, 4(1): 34-36.
[7] Summons R E, Erwin D H. Chemical clues to the earliest animal fossils[J]. Science, 2018, 361(6408): 1198-1199.
[8] French K L, Rocher D, Zumberge J E, et al. Assessing the distribution of sedimentary C40 carotenoids through time[J]. Geobiology, 2015, 13(2): 139-151.
[9] Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea[J]. Nature, 2005, 437(7060): 866-870.
[10] Damsté J S S, Kenig F, Koopmans M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900.
[11] 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发,1980,7(2):34-52.

Wang Tieguan. The primary property of Sinian Suberathem oil seepages and its petroleum geological significance[J]. Petroleum Exploration and Development, 1980, 7(2): 34-52.
[12] 郝石生,冯石. 华北地区震旦亚界古地温演化及冀中地区原生油气藏形成条件初探[J]. 华东石油学院学报,1982,6(1):1-17.

Hao Shisheng, Feng Shi. Paleotemperature evolution of Sinian Sub-Erathem in North China and origin of primary oil and gas pools[J]. Journal of the University of Petroleum China, 1982, 6(1): 1-17.
[13] 王铁冠,钟宁宁,王春江,等. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析[J]. 石油科学通报,2016,1(1):24-37.

Wang Tieguan, Zhong Ningning, Wang Chunjiang, et al. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirs in the Xiamaling Formation basal sandstone, Jibei Depression[J]. Petroleum Science Bulletin, 2016, 1(1): 24-37.
[14] 高林志,丁孝忠,曹茜,等. 中国晚前寒武纪年表和年代地层序列[J]. 中国地质,2010,37(4):1014-1020.

Gao Linzhi, Ding Xiaozhong, Cao Qian, et al. New geological time scale of Late Precambrian in China and geochronology[J]. Geology in China, 2010, 37(4): 1014-1020.
[15] 张水昌,张宝民,边立曾,等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学(D辑):地球科学,2007,37(5):636-643.

Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. The oil shale formed by the accumulation of the red algae more than 800 million years ago in Xiamaling Formation[J]. Science China (Seri. D): Earth Sciences, 2007, 37(5): 636-643.
[16] Illing C J, Hallmann C, Miller K E, et al. Airborne hydrocarbon contamination from laboratory atmospheres[J]. Organic Geochemistry, 2014, 76: 26-38.
[17] Sherman L S, Waldbauer J R, Summons R E. Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks[J]. Organic Geochemistry, 2007, 38(12): 1987-2000.
[18] Jarrett A J M, Schinteie R, Hope J M, et al. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material[J]. Organic Geochemistry, 2013, 61: 57-65.
[19] 肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.

Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19–C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
[20] Xiao H, Li M J, Wang W Q, et al. Identification, distribution and geochemical significance of four rearranged hopane series in crude oil[J]. Organic Geochemistry, 2019, 138: 103929.
[21] Hedberg H D. Significance of high-wax oils with respect to genesis of petroleum[J]. AAPG Bulletin, 1968, 52(5): 736-750.
[22] Tegelaar E W, de Leeuw J W, Derenne S, et al. A reappraisal of kerogen Formation[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 3103-3106.
[23] Brocks J J, Buick R, Logan G A, et al. Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, western Australia[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4289-4319.
[24] Jackson M J, Powell T G, Summons R E, et al. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years[J]. Nature, 1986, 322(6081): 727-729.
[25] Klomp U C. The chemical structure of a pronounced series of iso-alkanes in South Oman crudes[J]. Organic Geochemistry, 1986, 10(4/5/6): 807-814.
[26] Kelly A E, Love G D, Zumberge J E, et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia[J]. Organic Geochemistry, 2011, 42(6): 640-654.
[27] Grosjean E, Love G D, Kelly A E, et al. Geochemical evidence for an Early Cambrian origin of the ‘Q’ oils and some condensates from north Oman[J]. Organic Geochemistry, 2012, 45: 77-90.
[28] Jarrett A J M, Cox G M, Brocks J J, et al. Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia[J]. Geobiology, 2019, 17(4): 360-380.
[29] Luo Q Y, George S C, Xu Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37.
[30] Han J, Calvin M. Branched alkanes from blue–green algae[J]. Journal of the Chemical Society D: Chemical Communications, 1970, (22): 1490-1491.
[31] Shiea J, Brassell S C, Ward D M. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments?[J]. Organic Geochemistry, 1990, 15(3): 223-231.
[32] Robinson N, Eglinton G. Lipid chemistry of Icelandic hot spring microbial mats[J]. Organic Geochemistry, 1990, 15(3): 291-298.
[33] Kissin Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2445-2457.
[34] Kenig F, Sinninghe Damsté J S, Kock-van Dalen A C, et al. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2999-3015.
[35] Kenig F. C16–C29 homologous series of monomethylalkanes in the pyrolysis products of a Holocene microbial mat[J]. Organic Geochemistry, 2000, 31(2/3): 237-241.
[36] Blumenberg M, Thiel V, Riegel W, et al. Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania[J]. Precambrian Research, 2012, 196-197: 113-127.
[37] Luo G M, Hallmann C, Xie S C, et al. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation[J]. Geochimica et Cosmochimica Acta, 2015, 151: 150-167.
[38] Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376(6535): 53-56.
[39] Pawlowska M M, Butterfield N J, Brocks J J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation[J]. Geology, 2013, 41(2): 103-106.
[40] De Grande S M B, Aquino Neto F R, Mello M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047.
[41] Philp R P, Gilbert T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1/2/3): 73-84.
[42] Palacas J G, Anders D E, King J D. South Florida Basin - a prime example of carbonate source rocks of petroleum[M]//Palacas J G. Petroleum geochemistry and source rock potential of carbonate rocks. Tulsa: AAPG, 1984: 71-96.
[43] Connan J, Bouroullec J, Dessort D, et al. The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: A molecular approach[J]. Organic Geochemistry, 1986, 10(1/2/3): 29-50.
[44] 王铁冠. 一种新发现的三环萜烷生物标志物系列[J]. 江汉石油学院学报,1989,11(3):117-118.

Wang Tieguan. A novel tricyclic terpane biomarker series[J]. Journal of Jianghan Petroleum Institute, 1989, 11(3): 117-118.
[45] Xiao H, Wang T G, Li M J, et al. Extended series of tricyclic terpanes in the Mesoproterozoic sediments[J]. Organic Geochemistry, 2021, 156: 104245.
[46] Aquino Neto F R, Restle A, Connan J, et al. Novel tricyclic terpanes (C19, C20) in sediments and petroleums[J]. Tetrahedron Letters, 1982, 23(19): 2027-2030.
[47] Aquino Neto F R, Trendel J M, Restlé A, et al. Occurrence and Formation of tricyclic terpanes in sediments and petroleums[M]//Bjorøy M, Albrecht P, Cornford C, et al. Advances in organic geochemistry 1981. New York: Wiley, 1983: 659-667.
[48] 王铁冠. 燕山东段上元古界含沥青砂岩中一个新三环萜烷系列生物标志物[J]. 中国科学 B辑,1990,20(10):1077-1085.

Wang Tieguan. A novel tricyclic terpane biomarker series in the Upper Proterozoic bituminous sandstone, eastern Yanshan region[J]. Science in China Series B-Chemistry, Life Sciences & Earth Sciences, 1990, 20(10): 1077-1085.
[49] Volkman J K, Alexander R, Kagi R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry[J]. Geochimica et Cosmochimica Acta, 1983, 47(4): 785-794.
[50] Moldowan J M, Fago F J, Carlson R M K, et al. Rearranged hopanes in sediments and petroleum[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3333-3353.
[51] Xiao H, Li M J, Wang T G, et al. Four series of rearranged hopanes in the Mesoproterozoic sediments[J]. Chemical Geology, 2021, 573: 120210.
[52] Talbot H M, Rohmer M, Farrimond P. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(10): 1613-1622.
[53] Killops S D, Howell V J. Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin[J]. Chemical Geology, 1991, 91(1): 65-79.
[54] Volkman J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506.
[55] Shen Y, Thiel V, Suarez-Gonzalez P, et al. Sterol preservation in hypersaline microbial mats[J]. Biogeosciences, 2020, 17(3): 649-666.
[56] Zhang S C, Wang X M, Wang H J, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.
[57] Zhu S X, Zhu M Y, Knoll A H, et al. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7: 11500.
[58] 孙淑芬,朱士兴,黄学光. 天津蓟县中元古界高于庄组宏观化石的发现及其地质意义[J]. 古生物学报,2006,45(2):207-220.

Sun Shufen, Zhu Shixing, Huang Xueguang. Discovery of megafossils from the Mesoproterozoic Gaoyuzhuang Formation in the Jixian section, Tianjin and its stratigraphic significance[J]. Acta Palaeontologica Sinica, 2006, 45(2): 207-220.
[59] Zhang S C, Su J, Ma S H, et al. Eukaryotic red and green algae populated the tropical ocean 1400 million years ago[J]. Precambrian Research, 2021, 357: 106166.
[60] Zhang F L, Wang H J, Ye Y T, et al. The environmental context of carbonaceous compressions and implications for organism preservation 1.40 Ga and 0.63 Ga[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110449.