[1] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[2] Warren J K. Sulfate dominated sea-marginal and platform evaporative settings: Sabkhas and Salinas, Mudflats and Salterns[J]. Developments in Sedimentology, 1991, 50: 69-187.
[3] Badiozamani K. The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984.
[4] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
[5] Bush P. Some aspects of the diagenetic history of the Sabkha in Abu Dhabi, Persian gulf[M]//Purser B H. The Persian gulf. Berlin, Heidelberg: Springer, 1973: 395-407.
[6] Warren J K, St. C. Kendall C G. Comparison of sequences formed in marine Sabkha (subaerial) and Salina (subaqueous) settings--modern and ancient[J]. AAPG Bulletin, 1985, 69(6): 1013-1023.
[7] Braithwaite C J R, Rizzi G. The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland[J]. Sedimentology, 1997, 44(3): 421-440.
[8] Lavoie D, Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in northern Gaspé-Matapedia (Quebec): Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Petroleum Geology, 2004, 52(3): 256-269.
[9] 黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010:1-288.

Huang Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 1-288.
[10] Li Z Q, Goldstein R H, Franseen E K. Ascending freshwater-mesohaline mixing: A new scenario for dolomitization[J]. Journal of Sedimentary Research, 2013, 83(3): 277-283.
[11] 唐浩,谭秀成,刘宏,等. 川中磨溪气田嘉陵江组“土黄色”粉晶云岩成因及其储集层形成机制[J]. 石油勘探与开发,2014,41(4):504-512.

Tang Hao, Tan Xiucheng, Liu Hong, et al. Genesis and dolomitization of “Khali” powder crystal dolomite in Triassic Jialingjiang Formation, Moxi gas field, central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(4): 504-512.
[12] Olanipekun B J, Azmy K. Genesis and morphology of intracrystalline nanopores and mineral micro inclusions hosted in burial dolomite crystals: Application of Broad Ion Beam-Scanning Electron Microscope (BIB-SEM)[J]. Marine and Petroleum Geology, 2016, 74: 1-11.
[13] Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite Formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[14] Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1008.
[15] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280.
[16] Kenward P A, Goldstein R H, González L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea[J]. Geobiology, 2009, 7(5): 556-565.
[17] Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
[18] Land L S. Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: Reassessment of mixing-zone dolomite[M]//Taylor H P, O’Neil R R, Kaplan I R. Stable isotope geochemistry. Washington: Geochemical Society Special Publication, 1991: 121-133.
[19] Luczaj J A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch— A case for hydrothermal diagenesis[J]. AAPG Bulletin, 2006, 90(11): 1719-1738.
[20] 黄思静,佟宏鹏,刘丽红,等. 川东北飞仙关组白云岩的主要类型、地球化学特征和白云化机制[J]. 岩石学报,2009,25(10):2363-2372.

Huang Sijing, Tong Hongpeng, Liu Lihong, et al. Petrography, geochemistry and dolomitization mechanisms of Feixianguan dolomites in Triassic, NE Sichuan, China[J]. Acta Petrologica Sinica, 2009, 25(10): 2363-2372.
[21] 黄擎宇,刘伟,张艳秋,等. 白云石化作用及白云岩储层研究进展[J]. 地球科学进展,2015,30(5):539-551.

Huang Qingyu, Liu Wei, Zhang Yanqiu, et al. Progress of research on dolomitization and dolomite reservoir[J]. Advances in Earth Science, 2015, 30(5): 539-551.
[22] Li Z Q, Goldstein R H, Franseen E K. Geochemical record of fluid flow and dolomitization of carbonate platforms: Ascending freshwater-mesohaline mixing, Miocene of Spain[J]. Geological Society, London, Special Publications, 2015, 406(1): 115-140.
[23] Cooper K, Xiao Y T, Whitaker F, et al. Ascending freshwater-mesohaline mixing dolomitization: Insights from geochemical and reactive transport models[C]//AAPG annual convention and exhibition. Houston, Texas: AAPG, 2014.
[24] He R L, Jiang G Q, Lu W Y, et al. Iodine records from the Ediacaran Doushantuo cap carbonates of the Yangtze Block, South China[J]. Precambrian Research, 2020, 347: 105843.
[25] Sumrall J, Mylroie J, Kambesis P. Microbial mixing zone dolomitization and karst development within Isla de Mona Dolomite, Isla de Mona, Puerto Rico[J]. Carbonates and Evaporites, 2015, 30(1): 45-58.
[26] 杜金虎,邹才能,徐春春,等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发,2014,41(3):268-277.

Du Jinhu, Zou Caineng, Xu Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277.
[27] 杨雪飞,王兴志,杨跃明,等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报,2015,34(1):35-41.

Yang Xuefei, Wang Xingzhi, Yang Yueming, et al. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin[J]. Geological Science and Technology Information, 2015, 34(1): 35-41.
[28] 周进高,房超,季汉成,等. 四川盆地下寒武统龙王庙组颗粒滩发育规律[J]. 天然气工业,2014,34(8):27-36.

Zhou Jingao, Fang Chao, Ji Hancheng, et al. A development rule of Lower Cambrian Longwangmiao grain beaches in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 27-36.
[29] 杨雪飞,王兴志,唐浩,等. 四川盆地中部磨溪地区龙王庙组沉积微相研究[J]. 沉积学报,2015,33(5):972-982.

Yang Xuefei, Wang Xingzhi, Tang Hao, et al. Research sedimentary microfacies of the Longwangmiao Formation in Moxi area, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 972-982.
[30] 马腾,谭秀成,李凌,等. 四川盆地早寒武世龙王庙期沉积特征与古地理[J]. 沉积学报,2016,34(1):33-48.

Ma Teng, Tan Xiucheng, Li Ling, et al. Sedimentary characteristics and lithofacies palaeogeography during Longwangmiao Period of Early Cambrian, Sichuan Bain[J]. Acta Sedimentologica Sinica, 2016, 34(1): 33-48.
[31] 刘树根,宋金民,赵异华,等. 四川盆地龙王庙组优质储层形成与分布的主控因素[J]. 成都理工大学学报(自然科学版),2014,41(6):657-670.

Liu Shugen, Song Jinmin, Zhao Yihua, et al. Controlling factors of Formation and distribution of Lower Cambrian Longwangmiao Formation high-quality reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 657-670.
[32] 孟宪武,朱兰,王海军,等. 川西南地区下寒武统龙王庙组储层特征[J]. 成都理工大学学报(自然科学版),2015,42(2):180-187.

Meng Xianwu, Zhu Lan, Wang Haijun, et al. Characteristics of Lower Cambrian Longwangmiao Formation reservoir in southwest Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(2): 180-187.
[33] 刘伟,王国芝,刘树根,等. 川中磨溪构造龙王庙组流体包裹体特征及其地质意义[J]. 成都理工大学学报(自然科学版),2014,41(6):723-732.

Liu Wei, Wang Guozhi, Liu Shugen, et al. Characteristics and geological significance of fluid inclusions in Longwangmiao Formation of Moxi structure in central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 723-732.
[34] 徐春春,沈平,杨跃明,等. 乐山—龙女寺古隆起震旦系—下寒武统龙王庙组天然气成藏条件与富集规律[J]. 天然气工业,2014,34(3):1-7.

Xu Chunchun, Shen Ping, Yang Yueming, et al. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnüsi paleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 1-7.
[35] 袁海锋,赵明霞,王国芝,等. 川中磨溪构造寒武系龙王庙组油气运聚期次[J]. 成都理工大学学报(自然科学版),2014,41(6):694-702.

Yuan Haifeng, Zhao Mingxia, Wang Guozhi, et al. Phases of hydrocarbon migration and accumulation in Cambrian Longwangmiao Formation of Moxi structure, central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 694-702.
[36] 任影,钟大康,高崇龙,等. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J]. 石油学报,2016,37(9):1102-1115.

Ren Ying, Zhong Dakang, Gao Chonglong, et al. Geochemical characteristics, genesis and hydrocarbon significance of dolomite in the Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(9): 1102-1115.
[37] 雷和金,李国蓉,高鱼伟,等. 四川盆地南部寒武系白云石地球化学特征与形成机制[J]. 海相油气地质,2016,21(3):39-47.

Lei Hejin, Li Guorong, Gao Yuwei, et al. Geochemical characteristics and generation mechanism of Cambrian dolomite in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2016, 21(3): 39-47.
[38] 任影,钟大康,高崇龙,等. 川东及其周缘地区下寒武统龙王庙组沉积相[J]. 古地理学报,2015,17(3):335-346.

Ren Ying, Zhong Dakang, Gao Chonglong, et al. Sedimentary facies of the Lower Cambrian Longwangmiao Formation in eastern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography, 2015, 17(3): 335-346.
[39] 罗良,漆家福,张明正. 四川盆地周缘冲断带构造演化及变形差异性研究[J]. 地质论评,2015,61(3):525-534.

Luo Liang, Qi Jiafu, Zhang Mingzheng. Difference study on evolution and deformation of the fold-thrust belts surrounding Sichuan Basin[J]. Geological Review, 2015, 61(3): 525-534.
[40] 马永生,蔡勋育,赵培荣,等. 四川盆地大中型天然气田分布特征与勘探方向[J]. 石油学报,2010,31(3):347-354.

Ma Yongsheng, Cai Xunyu, Zhao Peirong, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 31(3): 347-354.
[41] 沈传波,梅廉夫,徐振平,等. 四川盆地复合盆山体系的结构构造和演化[J]. 大地构造与成矿学,2007,31(3):288-299.

Shen Chuanbo, Mei Lianfu, Xu Zhenping, et al. Architecture and tectonic evolution of composite basin-mountain system in Sichuan Basin and its adjacent areas[J]. Geotectonica et Metallogenia, 2007, 31(3): 288-299.
[42] 郑志红,李登华,白森舒,等. 四川盆地天然气资源潜力[J]. 中国石油勘探,2017,22(3):12-20.

Zheng Zhihong, Li Denghua, Bai Senshu, et al. Resource potentials of natural gas in Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(3): 12-20.
[43] Liu W P, Liu J, Cai M L, et al. Pore evolution characteristic of shale in the Longmaxi Formation, Sichuan Basin[J]. Petroleum Research, 2017, 2(4): 291-300.
[44] Zheng H F, Ma Y S, Chi G X, et al. Stratigraphic and structural control on hydrothermal dolomitization in the Middle Permian carbonates, Southwestern Sichuan Basin (China)[J]. Minerals, 2019, 9(1): 32.
[45] Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system: 1, Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4): 1219-1236.
[46] 黄思静,Hairuo Qing,裴昌蓉,等. 川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J]. 岩石学报,2006,22(8):2123-2132.

Huang Sijing, Hairuo Qing, Pei Changrong, et al. Strontium concentration, isotope composition and dolomitization fluids in the Feixianguan Formation of Triassic, eastern Sichuan of China[J]. Acta Petrologica Sinica, 2006, 22(8): 2123-2132.
[47] Wang Y, Shi Z J, Qing H R, et al. Petrological characteristics, geochemical characteristics, and dolomite model of the Lower Cambrian Longwangmiao Formation in the periphery of the Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 202:1-17.
[48] Clayton R N, Degens E T. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments: Geological notes[J]. AAPG Bulletin, 1959, 43(4): 890-897.
[49] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
[50] 谢渊,罗建宁,张哨楠,等. 羌塘盆地那底岗日地区中侏罗世碳酸盐岩碳、氧、锶同位素与古海洋沉积环境[J]. 矿物岩石,2000,20(1):80-86.

Xie Yuan, Luo Jianning, Zhang Shaonan, et al. Palaeo-oeanic sedimentary environment during the Middle Jurassic in Nadigangri area, Qiangtang Basin[J]. Journal of Mineralogy and Petrology, 2000, 20(1): 80-86.
[51] 王勇,施泽进,彭俊,等. 川东南地区石牛栏组碳、氧、锶同位素特征及其地质意义[J]. 矿物岩石地球化学通报,2009,28(4):330-335.

Wang Yong, Shi Zejin, Peng Jun, et al. The C, O, Sr isotope composition of Shiniulan Formation in southeast area of Sichuan and its geologic impolications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4): 330-335.
[52] Ishikawa M, Ichikuni M. Uptake of sodium and potassium by calcite[J]. Chemical Geology, 1984, 42(1/2/3/4): 137-146.
[53] Marriott C S, Henderson G M, Crompton R, et al. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1/2): 5-15.
[54] Geerken E, de Nooijer L J, van Dijk I, et al. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents[J]. Biogeosciences, 2018, 15(7): 2205-2218.
[55] 樊茹,邓胜徽,张学磊. 寒武系碳同位素漂移事件的全球对比性分析[J]. 中国科学(D辑):地球科学,2011,41(12):1829-1839.

Fan Ru, Deng Shenghui, Zhang Xuelei. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China(Seri.D):Earth Sciences, 2011, 41(12): 1829-1839.
[56] Vasconcelos C, McKenzie J A, Warthmann R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33(4): 317-320.
[57] Horita J. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 129: 111-124.
[58] 孙海涛,张玉银,柳慧林,等. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因[J]. 石油与天然气地质,2018,39(2):318-329.

Sun Haitao, Zhang Yuyin, Liu Huilin, et al. Typological analysis and genetic mechanism of dolomite in the Lower Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(2): 318-329.
[59] 张玺华,罗文军,文龙,等. 四川盆地寒武纪龙王庙组沉积相演化及石油地质意义[J]. 断块油气田,2018,25(4):419-425.

Zhang Xihua, Luo Wenjun, Wen Long, et al. Sedimentary facies evolution characteristics and petroleum geological significance of Cambrian Group in Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2018, 25(4): 419-425.