[1] Ottolenghi L, Adduce C, Roman F, et al. Analysis of the flow in gravity currents propagating up a slope[J]. Ocean Modelling, 2017, 115: 1-13.
[2] Shanmugam G. Ten turbidite myths[J]. Earth-Science Reviews, 2002, 58(3/4): 311-341.
[3] Lowe D R. Sediment gravity flows: Their classification and some problems of application to natural flows and deposits[M]//Doyle L J, Pilkey O H. Geology of Continental Slopes. Tulsa: SEPM Special Publication, 1979, 27: 75-82.
[4] Lowe D R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
[5] Wells M G, Dorrell R M. Turbulence processes within turbidity currents[J]. Annual Review of Fluid Mechanics, 2021, 53: 59-83.
[6] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
[7] Sumner E J, Talling P J, Amy L A. Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37(11): 991-994.
[8] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[9] Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488.
[10] Baker M L, Baas J H, Malarkey J, et al. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits[J]. Journal of Sedimentary Research, 2017, 87(11): 1176-1195.
[11] Baker M L, Baas J H. Does sand promote or hinder the mobility of cohesive sediment gravity flows?[J]. Sedimentology, 2023, 70(4): 1110-1130.
[12] Craig M J, Baas J H, Amos K J, et al. Biomediation of submarine sediment gravity flow dynamics[J]. Geology, 2020, 48(1): 72-76.
[13] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
[14] Keevil G M, Peakall J, Best J L, et al. Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel[J]. Marine Geology, 2006, 229(3/4): 241-257.
[15] Yang R C, Fan A P, Han Z Z, et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
[16] Fan A P, Yang R C, van Loon A J, et al. Classification of gravity-flow deposits and their significance for unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (southern Ordos Basin, China)[J]. Journal of Asian Earth Sciences, 2018, 161: 57-73.
[17] Wu Q R, Xian B Z, Gao X Z, et al. Differences of sedimentary triggers and depositional architecture of lacustrine turbidites from normal regression to forced regression: Eocene Dongying Depression, Bohai Bay Basin, East China[J]. Sedimentary Geology, 2022, 439: 106222.
[18] 杨田,操应长,王健,等. 陆相湖盆深水浊流与泥质碎屑流间过渡流沉积与沉积学意义[J]. 沉积学报,2023,41(5):1295-1310.

Yang Tian, Cao Yingchang, Wang Jian, et al. Deep-water deposition for transitional flow from turbidity current to muddy debris flow in lacustrine basins and its sedimentological significance[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1295-1310.
[19] 王林,吕奇奇,张严,等. 鄂尔多斯盆地西南部长7油层组深水重力流沉积岩相特征及分布模式[J]. 沉积学报,2025,43(1):154-168.

Wang Lin, Qiqi Lyu, Zhang Yan, et al. Lithofacies characteristics and distribution patterns of deep water gravity flow sedimentation in the Chang 7 oil formation in the southwest Ordos Basin[J]. Acta Sedimentologica Sinica, 2025, 43(1): 154-168.
[20] 吕奇奇,付金华,罗顺社,等. 坳陷湖盆重力流水道—朵叶复合体沉积特征及模式:以鄂尔多斯盆地西南部三叠系延长组长7段为例[J]. 石油勘探与开发,2022,49(6):1143-1156.

Qiqi Lyu, Fu Jinhua, Luo Shunshe, et al. Sedimentary characteristics and model of gravity flow channel-lobe complex in a Depression lake basin: A case study of Chang 7 member of Triassic Yanchang Formation in southwestern Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(6): 1143-1156.
[21] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
[22] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168.
[23] Shanmugam G. The Bouma sequence and the turbidite mind set[J]. Earth-Science Reviews, 1997, 42(4): 201-229.
[24] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报,2014,44(10):98-105.

Xu Jingping. Turbidity current research in the past century: An overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.
[25] 徐景平. 科学与技术并进:近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展,2013,28(5):552-558.

Xu Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552-558.
[26] Keulegan G H. Twelfth progress report on model laws for density currents: The motion of saline fronts in still water[M]. Washington: U.S. Department of Commerce, National Bureau of Standards, 1958.
[27] Hampton M A. The role of subaqueous debris flow in generating turbidity currents[J]. Journal of Sedimentary Research, 1972, 42(4): 775-793.
[28] García M H. Hydraulic jumps in sediment-driven bottom currents[J]. Journal of Hydraulic Engineering, 1993, 119(10): 1094-1117.
[29] Garcia M H. Depositional turbidity currents laden with poorly sorted sediment[J]. Journal of Hydraulic Engineering, 1994, 120(11): 1240-1263.
[30] Barahmand N, Shamsai A, Ghomeshi M. Roughness effects on hydraulic jumps in density currents[J]. Journal of Food Agriculture and Environment, 2011, 9(2): 531-534.
[31] 钟广法. 超临界浊流之地貌动力学和沉积特征[J]. 沉积学报,2023,41(1):52-72.

Zhong Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica, 2023, 41(1): 52-72.
[32] Weirich F H. Field evidence for hydraulic jumps in subaqueous sediment gravity flows[J]. Nature, 1988, 332(6165): 626-629.
[33] Mutti E, Tinterri R, Remacha E, et al. An introduction to the analysis of ancient Turbidite basins from an outcrop perspective[M]. Tulsa: AAPG, 1999.
[34] Simpson J E. Gravity currents in the environment and the laboratory[M]. Cambridge: Cambridge University Press, 1997.
[35] Sparks R S J, Bonnecaze R T, Huppert H E, et al. Sediment-laden gravity currents with reversing buoyancy[J]. Earth and Planetary Science Letters, 1993, 114(2/3): 243-257.
[36] Zavala C, Valiente L B, Vallez Y. The origin of lofting rhythmites: Lessons from thin sections[C]//Sediment Transfer from Shelf to Deepwater: Revisiting the Delivery Mechanisms. Ushuaia-Patagonia: AAPG, 2008, 50077: 3-7.
[37] Zavala C, Arcuri M, Blanco Valiente L. The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites[J]. Revue de Paléobiologie, 2012, 11(6): 457-469.
[38] Zavala C, Arcuri M. intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
[39] Ilstad T, Elverhøi A, Issler D, et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: A laboratory study using particle tracking[J]. Marine Geology, 2004, 213(1/2/3/4): 415-438.
[40] 付广,邓玮,王伟,等. 不同形态砂体油气运移路径分布控制因素及预测方法[J]. 西安石油大学学报(自然科学版),2016,31(3):23-29.

Fu Guang, Deng Wei, Wang Wei, et al. Controlling factors and prediction method of hydrocarbon migration pathway distribution in different forms of sandbodies[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(3): 23-29.
[41] 郭丽丽,张卫海,吴刚,等. 陆相成熟烃源岩区连通砂体对油气运移的控制作用[J]. 地球科学与环境学报,2011,33(2):159-162.

Guo Lili, Zhang Weihai, Wu Gang, et al. Control of connected Sandbody on oil-gas migration in terrestrial facies mature hydrocarbon source rock[J]. Journal of Earth Sciences and Environment, 2011, 33(2): 159-162.
[42] 张家强,李士祥,李宏伟,等. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探:以城页水平井区长73小层为例[J]. 石油学报,2021,42(5):570-587.

Zhang Jiaqiang, Li Shixiang, Li Hongwei, et al. Gravity flow deposits in the distal lacustrine basin of the 7th reservoir group of Yanchang Formation and deepwater oil and gas exploration in Ordos Basin: A case study of Chang 73 sublayer of Chengye horizontal well region[J]. Acta Petrolei Sinica, 2021, 42(5): 570-587.
[43] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601-614.

Fu Jinhua, Niu Xiaobing, Dan Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
[44] 杨哲翰,刘江艳,吕奇奇,等. 古地貌恢复及其对重力流沉积砂体的控制作用:以鄂尔多斯盆地三叠系延长组长73亚段为例[J]. 地质科技通报,2023,42(2):146-158.

Yang Zhehan, Liu Jiangyan, Qiqi Lyu, et al. Paleogeomorphological restoration and its control on gravity flow sand bodies: A case study of the Chang 73 submember of the Triassic Yanchang Formation in the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 146-158.