[1] 王冠民,钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48.

Wang Guanmin, Zhong Jianhua. A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Minera-logica, 2004, 23(1): 43-48.
[2] 王慧中,刘青春. 牛38井沙三中亚段上部红,灰韵律层的初步研究[J]. 复式油气田,1993,4(2):1-13.

Wang Huizhong, Liu Qingchun. Preliminary research on the brown-grey lacustrine rhythmic deposit of the well Niu-38 in the Upper part of Es3M, in Shengli petroleum province[J]. Oil Gas Field, 1993, 4(2): 1-13.
[3] Lamb H, Kebede S, Leng M, et al. Origin and isotopic composition of aragonite laminae in an Ethiopian crater lake[M]//Odada E O, Olago D O. The east African great lakes: Limnology, palaeolimnology and biodiversity. Dordrecht: Springer, 2002: 487-508.
[4] Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
[5] Anderson R Y, Dean W E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1/2/3/4): 215-235.
[6] Rieser A B, Bojar A V, Neubauer F, et al. Monitoring Cenozoic climate evolution of northeastern Tibet: Stable isotope constraints from the western Qaidam Basin, China[J]. International Journal of Earth Sciences, 2009, 98(5): 1063-1075.
[7] Brauer A, Mangili C, Moscariello A, et al. Palaeoclimatic implications from micro-facies data of a 5900 varve time series from the Piànico interglacial sediment record, southern Alps[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259(2/3): 121-135.
[8] 何文渊,冯子辉,张金友,等. 松辽盆地北部古龙凹陷古页8HC井地质剖面特征[J]. 油气藏评价与开发,2022,12(1):1-9.

He Wenyuan, Feng Zihui, Zhang Jinyou, et al. Characteristics of geological section of well-GY8HC in Gulong Sag, northern Songliao Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 1-9.
[9] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
[10] 李婷婷,朱如凯,白斌,等. 酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义[J]. 中国石油勘探,2015,20(1):38-47.

Li Tingting, Zhu Rukai, Bai Bin, et al. Characteristics and research significance of fine lacustrine sedimentary rock laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration, 2015, 20(1): 38-47.
[11] 赵贤正,蒲秀刚,周立宏,等. 深盆湖相区页岩油富集理论、勘探技术及前景:以渤海湾盆地黄骅坳陷古近系为例[J]. 石油学报,2021,42(2):143-162.

Zhao Xianzheng, Pu Xiugang, Zhou Lihong, et al. Enrichment theory, exploration technology and prospects of shale oil in lacustrine facies zone of deep basin: A case study of the Paleogene in Huanghua Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 143-162.
[12] 孔祥鑫,姜在兴,韩超,等. 束鹿凹陷沙三段下亚段细粒碳酸盐纹层特征与储集意义[J]. 油气地质与采收率,2016,23(4):19-26.

Kong Xiangxin, Jiang Zaixing, Han Chao, et al. Laminations characteristics and reservoir significance of fine-grained carbonate in the lower 3rd member of Shahejie Formation of Shulu Sag[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 19-26.
[13] 王伟庆,刘惠民,刘雅利,等. 东营凹陷古近系页岩碳酸盐纹层内部结构与成因[J]. 油气地质与采收率,2022,29(3):11-19.

Wang Weiqing, Liu Huimin, Liu Yali, et al. Texture and genesis of Paleogene lacustrine shale carbonate laminae in Dongying Sag, Jiyang Depresion, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 11-19.
[14] Ma J, Wu C D, Wang Y Z, et al. Paleoenvironmental reconstruction of a saline lake in the Tertiary: Evidence from aragonite laminae in the northern Tibet Plateau[J]. Sedimentary Geology, 2017, 353: 1-12.
[15] Zhuang G S, Hourigan J K, Ritts B D, et al. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, northwest China[J]. American Journal of Science, 2011, 311(2): 116-152.
[16] Stockhecke M, Anselmetti F S, Meydan A F, et al. The annual particle cycle in Lake Van (Turkey)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334: 148-159.
[17] Murphy Jr J T, Lowenstein T K, Pietras J T. Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney member transition zone[J]. Sedimentary Geology, 2014, 314: 75-91.
[18] 毛玲玲,伊海生,季长军,等. 柴达木盆地新生代湖相碳酸盐岩岩石学及碳氧同位素特征[J]. 地质科技情报,2014,33(1):41-48.

Mao Lingling, Yi Haisheng, Ji Changjun, et al. Petrography and carbon-oxygen isotope characteristics of the Cenozoic lacustrine carbonate rocks in Qaidam Basin[J]. Geological Science and Technology Information, 2014, 33(1): 41-48.
[19] Andersson S, Rosqvist G, Leng M J, et al. Late Holocene climate change in central Sweden inferred from lacustrine stable isotope data[J]. Journal of Quaternary Science, 2010, 25(8): 1305-1316.
[20] Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831.
[21] Roeser P, Franz S O, Litt T. Aragonite and calcite preservation in sediments from Lake Iznik related to bottom lake oxygenation and water column depth[J]. Sedimentology, 2016, 63(7): 2253-2277.
[22] 黄成刚,倪祥龙,马新民,等. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素:以柴达木盆地英西地区为例[J]. 西北大学学报(自然科学版),2017,47(5):724-738.

Huang Chenggang, Ni Xianglong, Ma Xinmin, et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs: A case of the Yingxi area in Qaidam Basin[J]. Journal of Northwest University (Natural Science Edition), 2017, 47(5): 724-738.
[23] 李翔,王建功,李飞,等. 柴达木盆地西部始新统湖相微生物岩沉积特征:以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏,2021,33(3):63-73.

Li Xiang, Wang Jiangong, Li Fei, et al. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin: A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas[J]. Lithologic Reservoirs, 2021, 33(3): 63-73.
[24] 王艳清,宋光永,刘占国,等. 柴达木盆地新生代咸化湖盆碳酸盐岩类型及发育特征[J]. 中国石油大学学报(自然科学版),2020,44(1):1-13.

Wang Yanqing, Song Guangyong, Liu Zhanguo, et al. Carbonate types and developmental patterns of Cenozoic saltwater lake basin in Qaidam Basin[J]. Journal of China University of Petroleum, 2020, 44(1): 1-13.
[25] 朱超,刘占国,宋光永,等. 柴达木盆地英雄岭构造带古近系湖相碳酸盐岩沉积模式、演化与分布[J]. 石油学报,2022,43(11):1558-1567,1622.

Zhu Chao, Liu Zhanguo, Song Guangyong, et al. Sedimentary model, evolution and distribution of Paleogene lacustrine carbonate rocks in Ying-xiongling structural belt, Qaidam Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1558-1567, 1622.
[26] 宋光永,朱超,李森明,等. 柴达木盆地英西地区湖相混积型碳酸盐岩储层成因及发育模式[J]. 中国石油大学学报(自然科学版),2022,46(3):1-12.

Song Guangyong, Zhu Chao, Li Senming, et al. Genetic mechanism and development model of lacustrine hybrid carbonate reservoirs in the western Yingxiongling structural belt, Qaidam Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 1-12.
[27] 李树峰,星耀武, Valdes P J,等. 欧亚大陆渐新世古气候时空演变及其驱动因子:基于植物大化石和气候模型的综合分析[C]//中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集. 郑州:中国古生物学会,2018.

Li Shufeng, Xing Yaowu, Valdes P. J., et al. Comprehensive analysis of the spatial and temporal evolution of paleoclimate in the Eurasian continent during the Eocene and its driving factors: Based on plant macrofossils and climate models [C]// Abstracts of the 12th National Member Representative Conference of the Chinese Paleontological Society and the 29th Annual Academic Meeting. Zhengzhou: Chinese Paleontological Society, 2018.
[28] 宋华颖,伊海生,范爱春,等. 柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析[J]. 中国地质,2010,37(1):117-126.

Song Huaying, Yi Haisheng, Fan Ai-chun, et al. Petrology and sedimentary environments of lacustrine carbonate rocks in the Xichagou section, western Qaidam Basin[J]. Geology in China, 2010, 37(1): 117-126.
[29] Guo P, Liu C Y, Huang L, et al. Palaeohydrological evolution of the Late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. climatic control[J]. Global and Planetary Change, 2018, 165: 44-61.
[30] 崔俊,毛建英,陈登钱,等. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏,2022,34(2):45-53.

Cui Jun, Mao Jianying, Chen Dengqian, et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[31] 秦胜飞,秦勇,钟宁宁,等. 碳酸盐岩中有机质赋存分类[J]. 石油勘探与开发,1996,23(6):23-27.

Qin Shengfei, Qin Yong, Zhong Ningning, et al. Classification on occurrence of organic matter in carbonate rocks[J]. Petroleum Exploration and Development, 1996, 23(6): 23-27.
[32] 袁剑英,黄成刚,曹正林,等. 咸化湖盆白云岩碳氧同位素特征及古环境意义:以柴西地区始新统下干柴沟组为例[J]. 地球化学,2015,44(3):254-266.

Yuan Jianying, Huang Chenggang, Cao Zhenglin, et al. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin[J]. Geochimica, 2015, 44(3): 254-266.
[33] Talbot M R, Kelts K. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments[M]//Katz B J. Lacustrine basin exploration: Case studies and modern analogs. Tulsa: American Association of Petroleum Geologists, 1990.
[34] 于冬冬,张永生,邢恩袁,等. 柴达木西部南翼山构造地表混积岩岩石学特征及沉积环境讨论[J]. 地质学报,2018,92(10):2068-2080.

Yu Dongdong, Zhang Yongsheng, Xing Enyuan, et al. Petrological characteristics and sedimentary environment of the surface mixed rocks in Nanyishan structure, western Qaidam Basin[J]. Acta Geologica Sinica, 2018, 92(10): 2068-2080.
[35] 年秀清. 柴达木盆地西部富锶地层的地球化学特征及其地质意义[D]. 西宁:中国科学院大学(中国科学院青海盐湖研究所),2018.

Xiuqing Nian. Geochemical characteristics of the rich strontium stratum in western Qaidam Basin and it’s geological significance[D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences), 2018.
[36] Jian X, Guan P, Fu S T, et al. Miocene sedimentary environment and climate change in the northwestern Qaidam Basin, northeastern Tibetan Plateau: Facies, biomarker and stable isotopic evidences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414: 320-331.
[37] 赵加凡,陈小宏,金龙. 柴达木盆地第三纪盐湖沉积环境分析[J]. 西北大学学报(自然科学版),2005,35(3):342-346.

Zhao Jiafan, Chen Xiaohong, Jin Long. Application of stable isotope in Tertiary saline lake of Qaidamu Basin[J]. Journal of Northwest University (Natural Science Edition), 2005, 35(3): 342-346.
[38] 纪友亮,马达德,薛建勤,等. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式[J]. 古地理学报,2017,19(5):757-772.

Ji Youliang, Ma Dade, Xue Jianqin, et al. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin, western Qaidam Basin[J]. Journal of Palaeogeography, 2017, 19(5): 757-772.
[39] 肖路安. 柴达木盆地新生代碳酸盐岩碳氧同位素特征及其古气候意义[D]. 兰州:兰州大学,2022.

Xiao Lu’an. Carbon and oxygen isotope characteristics of Cenozoic carbonate rocks in Qaidam Basin and their paleoclimate significance[D]. Lanzhou: Lanzhou University, 2022.
[40] 刘占国,张永庶,宋光永,等. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制[J]. 石油勘探与开发,2021,48(1):68-80.

Liu Zhanguo, Zhang Yongshu, Song Guangyong, et al. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 68-80.
[41] Zhou A F, Chen F H, Qiang M R, et al. The discovery of annually laminated sediments (varves) from shallow Sugan Lake in inland arid China and their paleoclimatic significance[J]. Science China Earth Sciences, 2007, 50(8): 1218-1224.
[42] Wen Y X, Sánchez-Román M, Li Y L, et al. Nucleation and stabilization of Eocene dolomite in evaporative lacustrine deposits from central Tibetan Plateau[J]. Sedimentology, 2020, 67(6): 3333-3354.
[43] Boyer Bruce W.. Tertiary lacustrine sediments from sentinel butte, North Dakota and the sedimentary record of ectogenic meromixis[J]. Journal of Sedimentary Research, 1981, 51(2): 429-440.
[44] Jackson M J. Mid-Proterozoic dolomitic varves and microcycles from the McArthur Basin, northern Australia[J]. Sedimentary Geology, 1985, 44(3/4): 301-326.
[45] Prasad S, Negendank J F W, Stein M. Varve counting reveals high resolution radiocarbon reservoir age variations in Palaeolake Lisan[J]. Journal of Quaternary Science, 2009, 24(7): 690-696.
[46] Kelts K, Hsü K J. Freshwater carbonate sedimentation[M]//Lerman A. Lakes: Chemistry, geology, physics. New York: Springer, 1978: 295-323.
[47] Burton E A, Walter L M. Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control?[J]. Geology, 1987, 15(2): 111-114.
[48] Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39(4): 489-504.
[49] 陈能贵,王艳清,徐峰,等. 柴达木盆地新生界湖盆咸化特征及沉积响应[J]. 古地理学报,2015,17(3):371-380.

Chen Nenggui, Wang Yanqing, Xu Feng, et al. Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J]. Journal of Palaeogeography, 2015, 17(3): 371-380.
[50] Guo P, Liu C Y, Yu M L, et al. Paleosalinity evolution of the Paleogene perennial Qaidam Lake on the Tibetan Plateau: Climatic vs. tectonic control[J]. International Journal of Earth Sciences, 2018, 107(5): 1641-1656.
[51] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[52] Folk R L, Land L S. Mg/Ca ratio and salinity: Two controls over crystallization of dolomite[J]. AAPG Bulletin, 1975, 59(1): 60-68.
[53] Huguet C, Fietz S, Stockhecke M, et al. Biomarker seasonality study in lake van, Turkey[J]. Organic Geochemistry, 2011, 42(11): 1289-1298.
[54] Song B W, Spicer R A, Zhang K X, et al. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the Early Oligocene[J]. Earth and Planetary Science Letters, 2020, 537: 116175.
[55] Casella L A, Griesshaber E, Yin X F, et al. Experimental diagenesis: Insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment[J]. Biogeosciences, 2017, 14(6): 1461-1492.
[56] Casella L A, He S X, Griesshaber E, et al. Hydrothermal alteration of aragonitic biocarbonates: Assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis[J]. Biogeosciences, 2018, 15(24): 7451-7484.
[57] Gerhardt S, Groth H, Rühlemann C, et al. Aragonite preservation in Late Quaternary sediment cores on the Brazilian continental slope: Implications for intermediate water circulation[J]. International Journal of Earth Sciences, 2000, 88(4): 607-618.
[58] Nohl T, Wetterich J, Fobbe N, et al. Lithological dependence of aragonite preservation in monospecific gastropod deposits of the Miocene Mainz Basin: Implications for the (dia-)genesis of limestone-marl alternations[J]. Journal of Sedimentary Research, 2020, 90(11): 1500-1509.
[59] 李维,朱筱敏,段宏亮,等. 苏北盆地高邮—金湖凹陷古近系阜宁组细粒沉积岩纹层特征与成因[J]. 古地理学报,2020,22(3):469-482.

Li Wei, Zhu Xiaomin, Duan Hong-liang, et al. Characteristics and forming mechanism of laminae fine-grained sedimentary rock of the Paleogene Funing Formation in Gaoyou and Jinhu sags, Subei Basin[J]. Journal of Palaeogeography, 2020, 22(3): 469-482.
[60] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
[61] 任雪瑶,谭先锋,张晨晨,等. 湖相碳酸盐岩白云石化流体来源、作用机制及物质过程[J]. 地质找矿论丛,2018,33(1):76-85.

Ren Xueyao, Tan Xianfeng, Zhang Chenchen, et al. Source of dolomitization fluid, mechanism and material process of lacustrine carbonate rocks[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(1): 76-85.
[62] 王兵杰,蔡明俊,林春明,等. 渤海湾盆地塘沽地区古近系沙河街组湖相白云岩特征及成因[J]. 古地理学报,2014,16(1):65-76.

Wang Bingjie, Cai Mingjun, Lin Chunming, et al. Characteristics and origin of lacustrine dolostone of the Paleogene Shahejie Formation in Tanggu area, Bohai Bay Basin[J]. Journal of Palaeogeography, 2014, 16(1): 65-76.
[63] Song Y G, Zong X L, Qian L B, et al. Mineralogical record for stepwise hydroclimatic changes in lake Qinghai sediments since the last glacial period[J]. Minerals, 2020, 10(11): 963.
[64] 李进龙,陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率,2003,10(5):1-3.

Li Jinlong, Chen Dongjing. Summary of quantified research method on paleosalinity[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(5): 1-3.
[65] Huang X T, Oberhänsli H, von Suchodoletz H, et al. Hydrological changes in western central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in Lake Son Kul[J]. Quaternary Science Reviews, 2014, 103: 134-152.
[66] Smith M E, Carroll A R, Scott J J, et al. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming[J]. Earth and Planetary Science Letters, 2014, 403: 393-406.
[67] McCormack J, Nehrke G, Jöns N, et al. Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study[J]. Chemical Geology, 2019, 513: 167-183.
[68] Wu M H, Zhuang G S, Hou M Q, et al. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: Manifestation of climatic wetting during the Oligocene icehouse[J]. Earth and Planetary Science Letters, 2021, 565: 116935.