[1] Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[J]. Geological Society, London, Special Publications, 2000, 178(1): 217-227.
[2] Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464.
[3] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin, Heidelberg: Springer, 2010.
[4] Reijmer J J G. Carbonate factories[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 80-84.
[5] Pomar L, Haq B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225.
[6] Pomar L. Carbonate systems[M]//Scarselli N, Adam J, Chiarella D, et al. Regional geology and tectonics: Principles of geologic analysis. 2nd ed. Amsterdam: Elsevier, 2020: 235-311.
[7] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796.
[8] Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169.
[9] Li X W, Falivene O, Minzoni M, et al. Interactions between sediment production and transport in the geometry of carbonate platforms: Insights from forward modeling of the Great Bank of Guizhou (Early to Middle Triassic), South China[J]. Marine and Petroleum Geology, 2020, 118: 104416.
[10] Sultana D, Burgess P, Bosence D. How do carbonate factories influence carbonate platform morphology? Exploring production-transport interactions with numerical forward modelling[J]. Sedimentology, 2022, 69(1): 372-393.
[11] 李明涛. 西藏南部晚二叠世—中三叠世沉积环境演变[D]. 武汉:中国地质大学,2020.

Li Mingtao. Depositional evolution of Upper Permian to Middle Triassic sequence in south Tibet[D]. Wuhan: China University of Geosciences, 2020.
[12] 倪新锋,沈安江,韦东晓,等. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学,2018,29(5):729-742.

Ni Xinfeng, Shen Anjiang, Wei Dongxiao, et al. Current hot topics and advances of carbonate sedimentology: AAPG 100 anniversary and 2017 annual meeting and exhibition[J]. Natural Gas Geoscience, 2018, 29(5): 729-742.
[13] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.

Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253.
[14] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
[15] 梅冥相. 蓝细菌繁荣滋养的苗岭世光养碳酸盐岩工厂:以安徽寿县卧龙山剖面崮山组为例[J]. 地质学报,2021,95(12):3571-3591.

Mei Mingxiang. Photozoan carbonate factory nourished by cyanobacterial bloom of the Cambrian Miaolingian: An example from the Wolongshan section in Shouxian county of Anhui province, North-China Platform[J]. Acta Geologica Sinica, 2021, 95(12): 3571-3591.
[16] 梅冥相. 寒武纪苗岭世特别的光养碳酸盐岩工厂:以江苏徐州贾旺剖面张夏组为例[J]. 地质学报,2022,96(3):744-768.

Mei Mingxiang. A particular photozoan factory of carbonate rock of the Cambrian Miaolingian: A case study of the Zhangxia Formation at the Jiawang section in Xuzhou city of Jiangsu province[J]. Acta Geologica Sinica, 2022, 96(3): 744-768.
[17] Meng Q, Xue W Q, Chen F Y, et al. Stratigraphy of the Guadalupian (Permian) siliceous deposits from central Guizhou of South China: Regional correlations with implications for carbonate productivity during the Middle Permian biocrisis[J]. Earth-Science Reviews, 2022, 228: 104011.
[18] Wright V P, Burgess P M. The carbonate factory continuum, facies mosaics and microfacies: An appraisal of some of the key concepts underpinning carbonate sedimentology[J]. Facies, 2005, 51(1/2/3/4): 17-23.
[19] Surlyk F. A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997: 293-307.
[20] James N P. The cool-water carbonate depositional realm[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997: 1-20.
[21] Lowenstam H A, Weiner S. On biomineralization[M]. New York: Oxford University Press, 1989.
[22] Schlager W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM Society for Sedimentary Geology, 2005.
[23] Lees A, Buller A T. Modern temperate-water and warm-water shelf carbonate sediments contrasted[J]. Marine Geology, 1972, 13(5): M67-M73.
[24] Pope M C, Read J F. High-resolution stratigraphy of the Lexington limestone (late Middle Ordovician), Kentucky, U.S.A.: A cool-water carbonate-clastic ramp in a tectonic ally active foreland basin[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997.
[25] Brandle R T, Krause F F. Upwelling, thermoclines and wave-sweeping on an equatorial carbonate ramp: Lower Carboniferous strata of western Canada[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997.
[26] Schlager W. The paradox of drowned reefs and carbonate platforms[J]. GSA Bulletin, 1981, 92(4): 197-211.
[27] Titschack J, Fink H G, Baum D, et al. Mediterranean cold-water corals: An important regional carbonate factory?[J]. The Depositional Record, 2016, 2(1): 74-96.
[28] 贾承造,张杰,沈安江,等. 非暖水碳酸盐岩:沉积学进展与油气勘探新领域[J]. 石油学报,2017,38(3):241-254.

Jia Chengzao, Zhang Jie, Shen Anjiang, et al. Non-tropical carbonate: Progress in sedimentology and new field of petroleum exploration[J]. Acta Petrolei Sinica, 2017, 38(3): 241-254.
[29] 苏旺,江青春,陈志勇,等. 冷水碳酸盐岩研究现状与展望[J]. 海相油气地质,2017,22(1):1-13.

Su Wang, Jiang Qingchun, Chen Zhiyong, et al. Cool-water carbonates: A review of the current status and prospects[J]. Marine Origin Petroleum Geology, 2017, 22(1): 1-13.
[30] Melis R, Salvi G. Foraminifer and ostracod occurrence in a cool-water carbonate factory of the cape Adare (Ross Sea, Antarctica): A key lecture for the climatic and oceanographic variations in the last 30, 000 years[J]. Geosciences, 2020, 10(10): 413.
[31] Wisshak M, Form A, Jakobsen J, et al. Temperate carbonate cycling and water mass properties from intertidal to bathyal depths (Azores)[J]. Biogeosciences, 2010, 7(8): 2379-2396.
[32] Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115.
[33] Berra F, Balini M, Levera M, et al. Anatomy of carbonate mounds from the Middle Anisian of Nakhlak (central Iran): Architecture and age of a subtidal microbial-bioclastic carbonate factory[J]. Facies, 2012, 58(4): 685-705.
[34] 李飞. 二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉:中国地质大学,2016.

Li Fei. The spatial and temporal distributions of ooids and their petrological and geochemical compositions: Implications for paleoceanographic conditions in the Permian-Triassic transition[D]. Wuhan: China University of Geosciences, 2016.
[35] Michel J, Laugié M, Pohl A, et al. Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792.
[36] 刘采,秦松,苏文博,等. 碳酸盐台地淹没过程的微相响应:以陕西铜川桃曲坡奥陶系剖面为例[J]. 地质调查与研究,2013,36(1):23-38.

Liu Cai, Qin Song, Su Wenbo, et al. Microfacies response to the drowning process of the carbonate platform: A case study on the Ordovician succession at the Taoqupo section, Tongchuan city, Shannxi province, North China Block[J]. Geological Survey and Research, 2013, 36(1): 23-38.
[37] Brigaud B, Vincent B, Carpentier C, et al. Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): Interplay of climate change, eustasy and tectonics[J]. Marine and Petroleum Geology, 2014, 53: 3-29.
[38] Brandano M, Corda L, Tomassetti L, et al. Frequency analysis across the drowning of a Lower Jurassic carbonate platform: The Calcare Massiccio Formation (Apennines, Italy)[J]. Marine and Petroleum Geology, 2016, 78: 606-620.
[39] Andrieu S, Brigaud B, Barbarand J, et al. Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: From the western France platform to the western Tethyan domain[J]. Sedimentary Geology, 2016, 345: 54-84.
[40] Courgeon S, Jorry S J, Camoin G F, et al. Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean)[J]. Marine Geology, 2016, 380: 90-105.
[41] Rudnitzki I D, Romero G R, Hidalgo R, et al. High frequency peritidal cycles of the Upper Araras Group: Implications for disappearance of the Neoproterozoic carbonate platform in southern Amazon Craton[J]. Journal of South American Earth Sciences, 2016, 65: 67-78.
[42] Han Z, Hu X M, Li J, et al. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456: 1-20.
[43] Silva-Tamayo J C, Lara M E, Yobo L N, et al. Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean[J]. Journal of South American Earth Sciences, 2017, 78: 213-237.
[44] Abadi M S, Kulagina E I, Voeten D F A E, et al. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations[J]. Sedimentary Geology, 2017, 348: 19-36.
[45] Brandano M, Cornacchia I, Tomassetti L. Global versus regional influence on the carbonate factories of Oligo-Miocene carbonate platforms in the Mediterranean area[J]. Marine and Petroleum Geology, 2017, 87: 188-202.
[46] Coletti G, El Kateb A, Basso D, et al. Nutrient influence on fossil carbonate factories: Evidence from SEDEX extractions on Burdigalian limestones (Miocene, NW Italy and S France)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475: 80-92.
[47] Bodin S, Hönig M R, Krencker F N, et al. Neritic carbonate crisis during the Early Bajocian: Divergent responses to a global environmental perturbation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 184-199.
[48] Salocchi A C, Argentino C, Fontana D. Evolution of a Miocene carbonate shelf (northern Apennines, Italy) revealed through a quantitative compositional study[J]. Marine and Petroleum Geology, 2017, 79: 340-350.
[49] Shi Z Q, Preto N, Jiang H S, et al. Demise of Late Triassic sponge mounds along the northwestern margin of the Yangtze Block, South China: Related to the Carnian Pluvial Phase?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 247-263.
[50] 孟琦,黄恒,颜佳新,等. 黔南地区中二叠世碳酸盐台地边缘沉积演化及古海洋意义[J]. 古地理学报,2018,20(1):87-103.

Meng Qi, Huang Heng, Yan Jiaxin, et al. Sedimentary evolution of the Middle Permian carbonate platform margin in southern Guizhou and its palaeo-oceanographic implications[J]. Journal of Palaeogeography, 2018, 20(1): 87-103.
[51] Posenato R, Bassi D, Trecalli A, et al. Taphonomy and evolution of Lower Jurassic lithiotid bivalve accumulations in the Apennine carbonate platform (southern Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 261-271.
[52] Han Z, Hu X M, Kemp D B, et al. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise[J]. Earth and Planetary Science Letters, 2018, 489: 59-71.
[53] Jin X, Shi Z Q, Rigo M, et al. Carbonate platform crisis in the Carnian (Late Triassic) of Hanwang (Sichuan Basin, South China): Insights from conodonts and stable isotope data[J]. Journal of Asian Earth Sciences, 2018, 164: 104-124.
[54] Wu F, Xie X N, Betzler C, et al. The impact of eustatic sea-level fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 373-385.
[55] Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian- Pliensbachian, southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. GSA Bulletin, 2019, 131(7/8): 1255-1275.
[56] Caron V, Bailleul J, Chanier F, et al. Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, St. Bartholomew, French West Indies)[J]. Sedimentary Geology, 2019, 387: 104-125.
[57] Cruz A M, Reis A T, Suc J P, et al. Neogene evolution and demise of the Amapá carbonate platform, Amazon continental margin, Brazil[J]. Marine and Petroleum Geology, 2019, 105: 185-203.
[58] Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (offshore Indus Basin)[J]. Marine and Petroleum Geology, 2019, 101: 519-539.
[59] Li M T, Song H J, Woods A D, et al. Facies and evolution of the carbonate factory during the Permian-Triassic crisis in south Tibet, China[J]. Sedimentology, 2019, 66(7): 3008-3028.
[60] Jin X, Gianolla P, Shi Z Q, et al. Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout Tethys[J]. Global and Planetary Change, 2020, 184: 103035.
[61] Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana margin[J]. Earth-Science Reviews, 2020, 208: 103254.
[62] Núñez-Useche F, Barragán R, Torres-Martínez M A, et al. Response of the western proto-North Atlantic margin to the early Aptian oceanic anoxic event (OAE) 1a: An example from the Cupido platform margin-gulf of Mexico, NE Mexico[J]. Cretaceous Research, 2020, 113: 104488.
[63] Reolid J, Betzler C, Braga J C, et al. Facies and geometry of drowning steps in a Miocene carbonate platform (Maldives)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109455.
[64] Rebelo T B, Batezelli A, Luna J S. Stratigraphic evolution and carbonate factory implications: Case study of the Albian carbonates of the Campos Basin, Brazil[J]. The Depositional Record, 2021, 7(2): 271-293.
[65] Li H, Li F, Li X, et al. Development and collapse of the Early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583: 110665.
[66] Li J, Hu X M, Garzanti E, et al. Climate-driven hydrological change and carbonate platform demise induced by the Paleocene-Eocene Thermal Maximum (southern Pyrenees)[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2021, 567:110250.
[67] Li S, Wignall P B, Poulton S W, et al. Carbonate shutdown, phosphogenesis and the variable style of marine anoxia in the Late Famennian (Late Devonian) in western Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110835.
[68] Godet A. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes[J]. Sedimentary Geology, 2013, 293: 45-66.
[69] Brandano M, Mateu-Vicens G, Baceta J I. Understanding carbonate factories through palaeoecological and sedimentological signals-Tribute to Luis Pomar[J]. Sedimentology, 2022, 69(1): 5-23.
[70] Margalef R. The pelagic ecosystem of the Caribbean Sea[C]//United Nations Educational, Scientific and Cultural Organization. Symposium on investigations and resources of the Caribbean Sea and adjacent regions. Paris: UNESCO, 1969: 483-498.
[71] Hallock P, Schlager W. Nutrient excess and the demise of coral reefs and carbonate platforms[J]. Palaios, 1986, 1(4): 389-398.
[72] Riley G A. Oceanography of long island sound, 1952-1954, II. Physical oceanography[J]. Bulletin of the Bingham Oceanographic Collection, 1956, 15: 15-46.
[73] Smith S V, Kimmerer W J, Laws E A, et al. Kaneohe Bay sewage diversion experiment: Perspectives on ecosystem responses to nutritional perturbation[J]. Pacific Science, 1981, 35(4): 279-395.
[74] Huston M. Variation in coral growth rates with depth at Discovery Bay, Jamaica[J]. Coral Reefs, 1985, 4(1): 19-25.
[75] Kanwisher J W, Wainwright S A. Oxygen balance in some reef corals[J]. The Biological Bulletin, 1967, 133(2): 378-390.
[76] Reiss Z, Hottinger L. The gulf of Aqaba: A rift-shaped depression[M]//Reiss Z, Hottinger L. The gulf of Aqaba. Berlin, Heidelberg: Springer, 1984: 19-32.
[77] Jaap W C. The ecology of the south Florida coral reefs: A community profile[R]. Petersburg: Florida Dept. of Natural Resources, St. Marine Research Lab, 1984.
[78] Tomascik T, Sander F. Effects of eutrophication on reef-building corals: II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies[J]. Marine Biology, 1987, 94(1): 53-75.
[79] Simkiss K. Phosphates as crystal poisons of calcification[J]. Biological Reviews, 1964, 39(4): 487-504.
[80] Kinsey D W, Domm A. Effects of fertilization on a coral reef environment- primary production studies[C]// Great Barrier Reef Committee. Proceedings of the 2nd International Coral Reef Symposium. Brisbane, Australia: Great Barrier Reef Committee, 1974, (1): 49-66.
[81] Kinsey D W, Davies P J. Effects of elevated nitrogen and phosphorus on coral reef growth[J]. Limnology and Oceanography, 1979, 24(5): 935-940.
[82] Wilmsen M. Evolution and demise of a Mid-Cretaceous carbonate shelf: The Altamira Limestones (Cenomanian) of northern Cantabria (Spain)[J]. Sedimentary Geology, 2000, 133(3/4): 195-226.
[83] Highsmith R C. Corals: The inside story[D]. Washington: University of Washington, 1979.
[84] Highsmith R C. Geographic patterns of coral bioerosion: A productivity hypothesis[J]. Journal of Experimental Marine Biology and Ecology, 1980, 46(2): 177-196.
[85] Brock R E, Smith S V. Response of coral reef cryptofaunal communities to food and space[J]. Coral Reefs, 1983, 1(3): 179-183.
[86] Keim L, Brandner R, Krystyn L, et al. Termination of carbonate slope progradation: An example from the Carnian of the dolomites, northern Italy[J]. Sedimentary Geology, 2001, 143(3/4): 303-323.
[87] Halfar J, Strasser M, Riegl B, et al. Oceanography, sedimentology and acoustic mapping of a bryomol carbonate factory in the northern gulf of California, Mexico[J]. Geological Society, London, Special Publications, 2006, 255(1): 197-215.
[88] Wilson M E J. Tectonic and volcanic influences on the development and diachronous termination of a Tertiary tropical carbonate platform[J]. Journal of Sedimentary Research, 2000, 70(2): 310-324.
[89] Caplan M L, Bustin R M, Grimm K A. Demise of a Devonian-Carboniferous carbonate ramp by eutrophication[J]. Geology, 1996, 24(8): 715-718.
[90] Fyhn M B W, Boldreel L O, Nielsen L H. Tectonic and climatic control on growth and demise of the Phanh Rang carbonate platform offshore south Vietnam[J]. Basin Research, 2009, 21(2): 225-251.
[91] Halfar J, Godinez-Orta L, Mutti M, et al. Nutrient and temperature controls on modern carbonate production: An example from the gulf of California, Mexico[J]. Geology, 2004, 32(3): 213-216.
[92] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(/2): 12-32.
[93] Bekker A, Eriksson K A. A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: A record of the Kenorland breakup[J]. Precambrian Research, 2003, 120(3/4): 327-364.
[94] Keim L, Spötl C, Brandner R. The aftermath of the Carnian carbonate platform demise: A basinal perspective (dolomites, southern Alps)[J]. Sedimentology, 2006, 53(2): 361-386.
[95] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3/4): 179-184.
[96] Arthur M A, Schlanger S O. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields[J]. AAPG Bulletin, 1979, 63(6): 870-885.
[97] Jenkyns H C. Cretaceous anoxic events: From continents to oceans[J]. Journal of the Geological Society, 1980, 137(2): 171-188.
[98] Fischer A G, Silva I P, de Boer P L. Cyclostratigraphy[M]//Ginsburg R N, Beaudoin B. Cretaceous resources, events and rhythms. Dordrecht: Springer, 1990.
[99] Gröcke D R, Hesselbo S P, Jenkyns H C. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change[J]. Geology, 1999, 27(2): 155-158.
[100] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 1041.
[101] Föllmi K B, Gainon F. Demise of the northern tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: The sedimentary record of the Col de la Plaine Morte area, central Switzerland[J]. Sedimentary Geology, 2008, 205(3/4): 142-159.
[102] Najarro M, Rosales I, Martín-Chivelet J. Major palaeoenvironmental perturbation in an early Aptian carbonate platform: Prelude of the Oceanic Anoxic Event 1a?[J]. Sedimentary Geology, 2011, 235(1/2): 50-71.
[103] Jenkyns H C, Sarti M, Masetti D, et al. Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, southern Alps, Italy[J]. Eclogae Geologicae Helvetiae, 1985, 78(2): 299-311.
[104] Fischer A G, Arthur M A. Secular variations in the pelagic realm[M]//Cook H E, Enos P. Deep-water carbonate environments. Tulsa: SEPM Special Publication, 1977: 19-50.
[105] Song H J, Wignall P B, Chu D L, et al. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath[J]. Scientific Reports, 2014, 4: 4132.
[106] 宋海军,童金南. 二叠纪—三叠纪之交生物大灭绝与残存[J]. 地球科学,2016,41(6):901-918.

Song Haijun, Tong Jinnan. Mass extinction and survival during the Permian-Triassic crisis[J]. Earth Science, 2016, 41(6): 901-918.
[107] Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean[J]. Nature, 2011, 469(7328): 80-83.
[108] Trecalli A, Spangenberg J, Adatte T, et al. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event[J]. Earth and Planetary Science Letters, 2012, 357-358: 214-225.
[109] Lü C L, Wu S G, Yao Y J, et al. Development and controlling factors of Miocene carbonate platform in the Nam Con Son Basin, southwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 45: 55-68.
[110] Taira K. The effect of tectonism on the climate of the past 1200 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 39(1/2): 165-169.
[111] Vogt P R. Volcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions?[J]. GSA Bulletin, 1989, 101(10): 1225-1245.
[112] Bahamonde J R, Colmenero J R, Vera C. Growth and demise of Late Carboniferous carbonate platforms in the eastern Cantabrian zone, Asturias, northwestern Spain[J]. Sedimentary Geology, 1997, 110(1/2): 99-122.
[113] Wilson M E J, Lokier S W. Siliciclastic and volcaniclastic influences on equatorial carbonates: Insights from the Neogene of Indonesia[J]. Sedimentology, 2002, 49(3): 583-601.
[114] Fernández-Mendiola P A, García-Mondéjar J. Carbonate platform growth influenced by contemporaneous basaltic intrusion (Albian of Larrano, Spain)[J]. Sedimentology, 2003, 50(5): 961-978.
[115] Álvaro J J, Clausen S. Botoman (Lower Cambrian) turbid-and clear-water reefs and associated environments from the High Atlas, Morocco[J]. Geological Society, London, Special Publications, 2007, 275(1): 51-70.
[116] Álvaro J J, Ezzouhairi H, Ayad N A, et al. Short-term episodes of carbonate productivity in a Cambrian uplifted rift shoulder of the coastal Meseta, Morocco[J]. Gondwana Research, 2008, 14(3): 410-428.
[117] 李泯星,屈海洲,程曦,等. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报,2020,38(4):810-825.

Li Minxing, Qu Haizhou, Cheng Xi, et al. Influence of volcanism on carbonate sedimentation and diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825.
[118] Huck S, Stein M, Immenhauser A, et al. Response of proto-North Atlantic carbonate-platform ecosystems to OAE1a-related stressors[J]. Sedimentary Geology, 2014, 313: 15-31.
[119] 时志强,钱利军,曾德勇,等. 晚三叠世卡尼期碳酸盐生产危机在东特提斯地区的地质记录[J]. 地质论评,2010,56(3):321-328.

Shi Zhiqiang, Qian Lijun, Zeng Deyong, et al. Geological records of Late Triassic Carnian carbonate productivity crisis in eastern tethys region (SW China)[J]. Geological Review, 2010, 56(3): 321-328.
[120] Wolfgang K, Flügel E, Golonka J. Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs[J]. AAPG Bulletin, 1999, 83(10): 1320-1336.
[121] Pálfy J, Kovács Z, Demény A, et al. End-Triassic crisis and “unreefing” led to the demise of the Dachstein carbonate platform: A revised model and evidence from the Transdanubian range, Hungary[J]. Global and Planetary Change, 2021, 199: 103428.
[122] Philip J M, Airaud-Crumiere C. The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: A global control[J]. Coral Reefs, 1991, 10(2): 115-125.
[123] Iba Y, Sano S I. Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 462-482.
[124] Whalen M T, Day J, Eberli G P, et al. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian, Alberta Basin, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 127-151.
[125] Graziano R. The Early Cretaceous drownings of tethyan carbonate platforms: Controlling mechanisms and paleoceanography. Insights from the Apulia record[C]//COFIN. Proceedings of the COFIN 2000 workshop, February 25-27, 2003, Pozzuoli, Napoli, Italia. Napoli: De Frede, 2003: 55-62.
[126] Huck S, Rameil N, Korbar T, et al. Latitudinally different responses of tethyan shoal-water carbonate systems to the early Aptian oceanic anoxic event (OAE 1a)[J]. Sedimentology, 2010, 57(7): 1585-1614.
[127] Hallock P. The role of nutrient availability in bioerosion: Consequences to carbonate buildups[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 63(1/2/3): 275-291.
[128] Miller A G, Espie G S, Canvin D T. Physiological aspects of CO2 and HCO3- transport by cyanobacteria: A review[J]. Canadian Journal of Botany, 1990, 68(6): 1291-1302.
[129] Mutti M, Hallock P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints[J]. International Journal of Earth Sciences, 2003, 92(4): 465-475.
[130] Raspini A. Shallow water carbonate platforms (late Aptian-early Albian, southern Apennines) in the context of supraregional to global changes: Re-appraisal of palaeoecological events as reflectors of carbonate factory response[J]. Solid Earth, 2012, 3(2): 225-249.
[131] Poag C W. Rise and demise of the Bahama-grand banks gigaplatform, northern margin of the Jurassic proto-Atlantic seaway[J]. Marine Geology, 1991, 102(1/2/3/4): 63-130.
[132] Merino-Tomé Ó, Porta G D, Kenter J A M, et al. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): Influence of tectonics, eustacy and carbonate production[J]. Sedimentology, 2012, 59(1): 118-155.
[133] Jarvis I, Carson G A, Cooper M K E, et al. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event[J]. Cretaceous Research, 1988, 9(1): 3-103.
[134] Thierry J, Peter R V. Shelfal accommodation as a major control on carbonate platforms[J]. Bulletin de la Société Géologique de France, 1995, 166(4): 423-435.
[135] Sattler U, Immenhauser A, Schlager W, et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea)[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 318-331.
[136] Allan J R, Matthews R K. Isotope signatures associated with early meteoric diagenesis[J]. Sedimentology, 1982, 29(6): 797-817.
[137] Joachimski M M. Subaerial exposure and deposition of shallowing upward sequences: Evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains[J]. Sedimentology, 1994, 41(4): 805-824.
[138] Sattler U, Immenhauser A, Hillgärtner H, et al. Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to lower Aptian, Oman)[J]. Sedimentology, 2005, 52(2): 339-361.
[139] Immenhauser A, Creusen A, Esteban M, et al. Recognition and interpretation of polygenic discontinuity surfaces in the Middle Cretaceous Shu’aiba, Nahr Umr, and Natih Formations of northern Oman[J]. GeoArabia, 2000, 5(2): 299-322.
[140] Dickson J A D, Coleman M L. Changes in carbon and oxygen isotope composition during limestone diagenesis[J]. Sedimentology, 1980, 27(1): 107-118.
[141] Esteban M, Taberner C. Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines[J]. Journal of Geochemical Exploration, 2003, 78-79: 355-359.
[142] Nelson C S. An introductory perspective on non-tropical shelf carbonates[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 3-12.
[143] James N P, Clarke J A D. Cool-water carbonates[M]. Tulsa: SEPM Society for Sedimentary Geology, 1997.
[144] Simms M J, Ruffell A H. Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268.
[145] Hornung T, Krystyn L, Brandner R. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)?[J]. Journal of Asian Earth Sciences, 2007, 30(2): 285-302.
[146] Rigo M, Preto N, Roghi G, et al. A rise in the carbonate compensation depth of western tethys in the Carnian (Late Triassic): Deep-water evidence for the Carnian Pluvial Event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/3/4): 188-205.
[147] Lukeneder S, Lukeneder A, Harzhauser M, et al. A delayed carbonate factory breakdown during the tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey)[J]. Facies, 2012, 58(2): 279-296.
[148] 金鑫,时志强,王艳艳,等. 晚三叠世中卡尼期极端气候事件:研究进展及存在问题[J]. 沉积学报,2015,33(1):105-115.

Jin Xin, Shi Zhiqiang, Wang Yanyan, et al. Mid-Carnian (Late Triassic) extreme climate event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115.
[149] Gattolin G, Preto N, Breda A, et al. Sequence stratigraphy after the demise of a high-relief carbonate platform (Carnian of the dolomites): Sea-level and climate disentangled[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423: 1-17.
[150] Li Q, Ruhl M, Wang Y D, et al. Response of Carnian Pluvial Episode evidenced by organic carbon isotopic excursions from western Hubei, South China[J]. Palaeoworld, 2022, 31(2): 324-333.
[151] Betzler C, Brachert T C, Kroon D. Role of climate in partial drowning of the Queensland Plateau carbonate platform (northeastern Australia)[J]. Marine Geology, 1995, 123(1/2): 11-32.
[152] Simone L, Carannante G. The fate of Foramol (“temperate-type”) carbonate platforms[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 347-354.
[153] Bourrouilh-Le Jan F G, Hottinger L C. Occurrence of rhodolites in the tropical Pacific: A consequence of Mid-Miocene paleo-oceanographic change[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 355-358, 363-367.
[154] Adams C G, Lee D E, Rosen B R. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 77(3/4): 289-313.
[155] Rasser M W, Scheibner C, Mutti M. A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain)[J]. Facies, 2005, 51(1/2/3/4): 218-232.
[156] Chatalov A, Bonev N, Ivanova D. Depositional characteristics and constraints on the mid-Valanginian demise of a carbonate platform in the intra-tethyan domain, Circum-Rhodope Belt, northern Greece[J]. Cretaceous Research, 2015, 55: 84-115.
[157] Donnadieu Y, Dromart G, Goddéris Y, et al. A mechanism for brief glacial episodes in the Mesozoic greenhouse[J]. Paleoceanography, 2011, 26(3): PA3212.
[158] Krencker F N, Bodin S, Hoffmann R, et al. The Middle Toarcian cold snap: Trigger of mass extinction and carbonate factory demise[J]. Global and Planetary Change, 2014, 117: 64-78.
[159] Martinez M, Dera G. Orbital pacing of carbon fluxes by a ~ 9-My eccentricity cycle during the Mesozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12604-12609.
[160] 高远. 北羌塘坳陷中—下侏罗统多级别层序格架及意义:以羌科1井雀莫错组为例[D]. 北京:中国地质大学,2020.

Gao Yuan. Sequence stratigraphic frameworks in different scales of Lower-Middle Jurassic in the northern Qiangtang Depression and their significances: A case study of the Quemoco Formation in the QK-1 well[D]. Beijing: China University of Geosciences, 2020.
[161] Heydari E, Arzani N, Safaei M, et al. Ocean's response to a changing climate: Clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza section, Iran[J]. Global and Planetary Change, 2013, 105: 79-90.
[162] Slater S M, Bown P, Twitchett R J, et al. Global record of “ghost” nannofossils reveals plankton resilience to high CO2 and warming[J]. Science, 2022, 376(6595): 853-856.
[163] Liang H D. End-Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan section of South China[J]. Chinese Science Bulletin, 2002, 47(16): 1393-1397.
[164] Heydari E, Hassanzadeh J. Deev Jahi Model of the Permian-Triassic boundary mass extinction: A case for gas hydrates as the main cause of biological crisis on Earth[J]. Sedimentary Geology, 2003, 163(1/2): 147-163.
[165] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615.
[166] Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 264-277.
[167] Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Comment[J]. GSA Bulletin, 2009, 121(5/6): 954-956.
[168] Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8543-8548.
[169] Kiessling W, Simpson C. On the potential for ocean acidification to be a general cause of ancient reef crises[J]. Global Change Biology, 2011, 17(1): 56-67.
[170] Montenegro A, Spence P, Meissner K J, et al. Climate simulations of the Permian-Triassic boundary: Ocean acidification and the extinction event[J]. Paleoceanography, 2011, 26(3): PA3207.
[171] Weidlich O, Bernecker M. Biotic carbonate precipitation inhibited during the Early Triassic at the rim of the Arabian Platform (Oman)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 129-150.
[172] Clapham M E, Payne J L. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian[J]. Geology, 2011, 39(11): 1059-1062.
[173] Georgiev S, Stein H J, Hannah J L, et al. Hot acidic Late Permian seas stifle life in record time[J]. Earth and Planetary Science Letters, 2011, 310(3/4): 389-400.
[174] Beauchamp B, Grasby S E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352: 73-90.
[175] Payne J L, Clapham M E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century?[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 89-111.
[176] Kump L R, Bralower T J, Ridgwell A. Ocean acidification in deep time[J]. Oceanography, 2009, 22(4): 94-107.
[177] Joachimski M M, Müller J, Gallagher T M, et al. Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction[J]. Geology, 2022, 50(6): 650-654.
[178] Kantzas E P, Val Martin M, Lomas M R, et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom[J]. Nature Geoscience, 2022, 15(5): 382-389.
[179] Jin X, Franceschi M, Martini R, et al. Eustatic sea-level fall and global fluctuations in carbonate production during the Carnian Pluvial Episode[J]. Earth and Planetary Science Letters, 2022, 594: 117698.
[180] Franceschi M, Preto N, Marangon A, et al. High precipitation rate in a Middle Triassic carbonate platform: Implications on the relationship between seawater saturation state and carbonate production[J]. Earth and Planetary Science Letters, 2016, 444: 215-224.
[181] 古强,邢凤存,钱红杉,等. 川东北飞仙关组鲕粒特征与水动力相关性研究[J]. 沉积学报,2021,39(6):1371-1386.

Gu Qiang, Xing Fengcun, Qian Hongshan, et al. Correlation between ooid characteristics and hydrodynamic forces in the Feixianguan Formation, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386.
[182] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2021, 49(2): 156-161.
[183] Lees A. Possible influence of salinity and temperature on modern shelf carbonate sedimentation[J]. Marine Geology, 1975, 19(3): 159-198.
[184] Allison P A, Wright V P. Switching off the carbonate factory: A-tidality, stratification and brackish wedges in Epeiric seas[J]. Sedimentary Geology, 2005, 179(3/4): 175-184.
[185] 徐捷凯. 颗石藻对盐度与碳酸盐系统变化的生理学响应[D]. 厦门:厦门大学,2018.

Xu Jiekai. Physiological responses of coccolithophores to changes in salinity and carbonate chemistry[D]. Xiamen: Xiamen University, 2018.
[186] Sun S Q. Skeletal aragonite dissolution from hypersaline seawater: A hypothesis[J]. Sedimentary Geology, 1992, 77(3/4): 249-257.
[187] 宋国奇,王延章,石小虎,等. 东营沙四段古盐度对碳酸盐岩沉积的控制作用[J]. 西南石油大学学报,2013,35(2):8-14.

Song Guoqi, Wang Yanzhang, Shi Xiaohu, et al. Palaeosalinity and its controlling on the development of beach and bar in Lake Facies[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(2): 8-14.
[188] Krijgsman W, Langereis C G, Zachariasse W J, et al. Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis[J]. Marine Geology, 1999, 153(1/2/3/4): 147-160.
[189] Krijgsman W, Hilgen F J, Raffi I, et al. Chronology, causes and progression of the Messinian salinity crisis[J]. Nature, 1999, 400(6745): 652-655.
[190] Manzi V, Lugli S, Roveri M, et al. A new facies model for the Upper Gypsum of Sicily (Italy): Chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean[J]. Sedimentology, 2009, 56(7): 1937-1960.
[191] Manzi V, Lugli S, Roveri M, et al. The Messinian “Calcare di Base” (Sicily, Italy) revisited[J]. GSA Bulletin, 2011, 123(1/2): 347-370.
[192] Manzi V, Gennari R, Hilgen F, et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean[J]. Terra Nova, 2013, 25(4): 315-322.
[193] Manzi V, Lugli S, Roveri M, et al. The Messinian salinity crisis in Cyprus: A further step towards a new stratigraphic framework for eastern Mediterranean[J]. Basin Research, 2016, 28(2): 207-236.
[194] Bourillot R, Vennin E, Kolodka C, et al. The role of topography and erosion in the development and architecture of shallow-water coral bioherms (Tortonian–Messinian, Cabo de Gata, SE Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1/2): 92-114.
[195] Hoffmann R, Bitner M A, Pisera A, et al. Late Miocene biota from the Abad member of the Carboneras-Nijar Basin (Spain, Andalusia): A bathyal fossil assemblage pre-dating the Messinian salinity crisis[J]. Geobios, 2020, 59: 1-28.
[196] Tzevahirtzian A, Caruso A, Scopelliti G, et al. Onset of the Messinian Salinity Crisis: Sedimentological, petrographic and geochemical characterization of the pre-salt sediments from a new core (Caltanissetta Basin, Sicily)[J]. Marine and Petroleum Geology, 2022, 141: 105686.
[197] Caruso A, Pierre C, Blanc-Valleron M M, et al. Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429: 136-162.
[198] Borrelli M, Perri E, Avagliano D, et al. Paleogeographic and sedimentary evolution of North Calabrian basins during the Messinian Salinity Crisis (South Italy)[J]. Marine and Petroleum Geology, 2022, 141: 105726.
[199] Bourillot R, Vennin E, Rouchy J M, et al. The end of the Messinian Salinity Crisis in the western Mediterranean: Insights from the carbonate platforms of south-eastern Spain[J]. Sedimentary Geology, 2010, 229(4): 224-253.
[200] Bourillot R, Vennin E, Rouchy J M, et al. Structure and evolution of a Messinian mixed carbonate-siliciclastic platform: The role of evaporites (Sorbas Basin, south-east Spain)[J]. Sedimentology, 2010, 57(2): 477-512.
[201] Gindre-Chanu L, Borrelli M, Caruso A, et al. Carbonate/evaporitic sedimentation during the Messinian salinity crisis in active accretionary wedge basins of the northern Calabria, southern Italy[J]. Marine and Petroleum Geology, 2020, 112: 104066.
[202] Andreetto F, Aloisi G, Raad F, et al. Freshening of the Mediterranean Salt Giant: Controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis[J]. Earth-Science Reviews, 2021, 216: 103577.
[203] Schlager W. Scaling of sedimentation rates and drowning of reefs and carbonate platforms[J]. Geology, 1999, 27(2): 183-186.
[204] Schlager W, Marsal D, van der Geest P A G, et al. Sedimentation rates, observation span, and the problem of spurious correlation[J]. Mathematical Geology, 1998, 30(5): 547-556.