[1] Curtis C D. Possible links between sandstone diagenesis and depth-related geochemical reactions occurring in enclosing mudstones[J]. Journal of the Geological Society, 1978, 135(1): 107-117.
[2] Bathurst R G C. Carbonate sediments and their diagenesis[M]. Amsterdam: Elsevier, 1971.
[3] Schmidt V, McDonald D A, Platt R L. Pore geometry and reservoir aspects of secondary porosity in sandstones[J]. Bulletin of Canadian Petroleum Geology, 1977, 25(2): 271-290.
[4] Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 70-89.
[5] Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737.
[6] Löhr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132.
[7] Morad S, Ketzer J M, de Ros L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins[J]. Sedimentology, 2000, 47(S1): 95-120.
[8] Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
[9] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984.
[10] Seewald J S. Organic–inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
[11] 应凤祥,罗平,何东博. 中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M]. 北京:石油工业出版社,2004.

Ying Fengxiang, Luo Ping, He Dongbo, et al. Clastic reservoir diagenesis and diagenetic numerical simulation of petroliferous basins in China[M]. Beijing: Petroleum Industry Press, 2004.
[12] Boudreau B P. Modelling the sulfide-oxygen reaction and associated pH gradients in porewaters[J]. Geochimica et Cosmochimica Acta, 1991, 55(1): 145-159.
[13] Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
[14] 王瑞飞,沈平平,赵良金. 深层储集层成岩作用及孔隙度演化定量模型:以东濮凹陷文东油田沙三段储集层为例[J]. 石油勘探与开发,2011,38(5):552-559.

Wang Ruifei, Shen Pingping, Zhao Liangjin. Diagenesis of deep sandstone reservoirs and a quantitative model of porosity evolution: Taking the third member of Shahejie Formation in the Wendong oilfield, Dongpu Sag, as an example[J]. Petroleum Exploration and Development, 2011, 38(5): 552-559.
[15] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[16] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[17] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
[18] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[19] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.
[20] Fishman N S, Egenhoff S O, Boehlke A R, et al. Petrology and diagenetic history of the upper shale member of the Late Devonian-early Mississippian Bakken Formation, Williston Basin, North Dakota[J]. AAPG Bulletin, 2017, 101(10): 1625-1673.
[21] 王秀平,牟传龙,王启宇,等. 川南及邻区龙马溪组黑色岩系成岩作用[J]. 石油学报,2015,36(9):1035-1047.

Wang Xiuping, Mou Chuanlong, Wang Qiyu, et al. Diagenesis of black shale in Longmaxi Formation, southern Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2015, 36(9): 1035-1047.
[22] Camp W K, Diaz E, Wawak B. Electron microscopy of shale hydrocarbon reservoirs[M]. Tulsa: American Association of Petroleum Geologists, 2013.
[23] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
[24] Longman M W, Drake W R, Milliken K L, et al. A comparison of silica Diagenesis in the Devonian Woodford shale (central basin platform, west Texas) and cretaceous Mowry shale (Powder River Basin, Wyoming)[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 49-67.
[25] Peltonen C, Marcussen Ø, Bjørlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898.
[26] Dowey P J, Taylor K G. Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA[J]. Sedimentary Geology, 2017, 356: 15-25.
[27] Jiao X, Liu Y Q, Yang W, et al. Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin, NW China: Implications for penecontemporaneous transformation of silica minerals[J]. International Journal of Earth Sciences, 2018, 107(6): 1989-2009.
[28] Zhao J H, Jin Z K, Jin Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38.
[29] 赵建华,金之钧,金振奎,等, 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.

Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
[30] Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin, 1996, 80(5): 731-745.
[31] Alexandre A, Meunier J D, Llorens E, et al. Methodological improvements for investigating silcrete formation: Petrography, FT-IR and oxygen isotope ratio of silcrete quartz cement, Lake Eyre Basin (Australia)[J]. Chemical Geology, 2004, 211(3/4): 261-274.
[32] Kastner M, Gieskes J M. Chapter 13 opal-a to opal-Ct transformation: A kinetic study[J]. Developments in Sedimentology, 1983, 36: 211-227.
[33] Thiry M, Ayrault M B, Grisoni J C. Ground-water silicification and leaching in sands: Example of the Fontainebleau Sand (Oligocene) in the Paris Basin[J]. GSA Bulletin, 1988, 100(8): 1283-1290.
[34] Haddad S C, Worden R H, Prior D J, et al. Quartz cement in the Fontainebleau sandstone, Paris basin, France: Crystallography and implications for mechanisms of cement growth[J]. Journal of Sedimentary Research, 2006, 76(2): 244-256.
[35] Cecil C B, Heald M T. Experimental investigation of the effects of grain coatings on quartz growth[J]. Journal of Sedimentary Research, 1971, 41(2): 582-584.
[36] Heald M T, Larese R E. Influence of coatings on quartz cementation[J]. Journal of Sedimentary Research, 1974, 44(4): 1269-1274.
[37] Paxton S T, Szabo J O, Calvert C S. Preservation of primary porosity in deeply buried sandstones: A new play concept from the Cretaceous Tuscaloosa sandstone of Louisiana[J]. AAPG Bulletin, 1990, 74(5): 737.
[38] Pittman E D, Larese R E, Heald M T. Clay coats: Occurrence and relevance to preservation of porosity in sandstones[M]//Houseknecht D W, Pittman E D. Origin, diagenesis, and petrophysics of clay minerals in sandstones. Tulsa: SEPM Special Publication, 1992: 241-255.
[39] Jahren J, Ramm M. The porosity‐preserving effects of microcrystalline quartz coatings in Arenitic sandstones: Examples from the Norwegian continental shelf[M]//Worden R H, Morad S. Quartz cementation in sandstones. Oxford: Blackwell Publishing Ltd., 2000.
[40] Milliken K L. Compactional and mass-balance constraints inferred from the volume of quartz cementation in mudrocks[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 33-48.
[41] Lander R H, Larese R E, Bonnell L M. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates[J]. AAPG Bulletin, 2008, 92(11): 1537-1563.
[42] Hinman N W. Chemical factors influencing the rates and sequences of silica phase transitions: Effects of organic constituents[J]. Geochimica et Cosmochimica Acta, 1990, 54(6): 1563-1574.
[43] Isaacs C M. Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California[J]. Geology, 1982, 10(6): 304-308.
[44] Canfield D E. Organic matter oxidation in marine sediments[M]//Wollast R, Mackenzie F T, Chou L. Interactions of C, N, P and S biogeochemical cycles and global change. Berlin, Heidelberg: Springer, 1993.
[45] Chen X Y, Chafetz H S, Andreasen R, et al. Silicon isotope compositions of euhedral authigenic quartz crystals: Implications for abiotic fractionation at surface temperatures[J]. Chemical Geology, 2016, 423: 61-73.
[46] Stolper D A, Love G D, Bates S, et al. Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran–Cambrian boundary, Sultanate of Oman[J]. Geobiology, 2017, 15(3): 401-426.
[47] Zanella A, Cobbold P R, Ruffet G, et al. Geological evidence for fluid overpressure, hydraulic fracturing and strong heating during maturation and migration of hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza province, Argentina[J]. Journal of South American Earth Sciences, 2015, 62: 229-242.
[48] Hilgers C, Koehn D, Bons P D, et al. Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins[J]. Journal of Structural Geology, 2001, 23(6/7): 873-885.
[49] Israelson C, Halliday A N, Buchardt B. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale[J]. Earth and Planetary Science Letters, 1996, 141(1/2/3/4): 153-159.
[50] Rodrigues N, Cobbold P R, Loseth H, et al. Widespread bedding-parallel veins of fibrous calcite (’beef') in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression[J]. Journal of the Geological Society, 2009, 166(4): 695-709.
[51] Cobbold P R, Zanella A, Rodrigues N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20.
[52] Barth T, Bjørlykke K. Organic acids from source rock maturation: Generation potentials, transport mechanisms and relevance for mineral diagenesis[J]. Applied Geochemistry, 1993, 8(4): 325-337.
[53] Heydari E, Wade W J. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks: Implications for organic acids as factors in diagenesis[J]. AAPG Bulletin, 2002, 86(7): 1285-1303.
[54] Liang C, Cao Y C, Liu K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
[55] Webster T. IV. —Observations on the Purbeck and Portland beds[J]. Transactions of the Geological Society of London, 1826, S2-2(1): 37-44.
[56] Gresley W S. Cone-in-cone: How it occurs in the Devonian; Series in Pennsylvania (U.S.A.); with Further Details of its Structure, Varieties, etc.[J]. Quarterly Journal of the Geological Society, 1894, 50(1/2/3/4): 731-739.
[57] Zhang J G, Jiang Z X, Jiang X L, et al. Oil generation induces sparry calcite formation in lacustrine mudrock, Eocene of east China[J]. Marine and Petroleum Geology, 2016, 71: 344-359.
[58] 王冠民,任拥军,钟建华,等. 济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J]. 地质学报,2005,79(6):834-838.

Wang Guanmin, Ren Yongjun, Zhong Jianhua, et al. Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J]. Acta Geologica Sinica, 2005, 79(6): 834-838.
[59] Taber S. The growth of crystals under external pressure[J]. American Journal of Science, 1916, S4-41(246): 532-556.
[60] Taber S. The origin of veinlets in the Silurian and Devonian strata of central New York[J]. The Journal of Geology, 1918, 26(1): 56-73.
[61] Shovkun I, Espinoza D N. Geomechanical implications of dissolution of mineralized natural fractures in shale formations[J]. Journal of Petroleum Science and Engineering, 2018, 160: 555-564.
[62] Bons P D, Montenari M. The formation of antitaxial calcite veins with well-developed fibres, Oppaminda Creek, South Australia[J]. Journal of Structural Geology, 2005, 27(2): 231-248.
[63] Nollet S, Urai J L, Bons P D, et al. Numerical simulations of polycrystal growth in veins[J]. Journal of Structural Geology, 2005, 27(2): 217-230.
[64] Means W D, Li T. A laboratory simulation of fibrous veins: Some first observations[J]. Journal of Structural Geology, 2001, 23(6/7): 857-863.
[65] Nollet S, Hilgers C, Urai J L. Experimental study of polycrystal growth from an advecting supersaturated fluid in a model fracture[J]. Geofluids, 2006, 6(2): 185-200.
[66] Brooks B T. Evidence of catalytic action in petroleum formation[J]. Industrial & Engineering Chemistry, 1952, 44(11): 2570-2577.
[67] Grim R E. Relation of clay mineralogy to origin and recovery of petroleum[J]. AAPG Bulletin, 1947, 31(8): 1491-1499.
[68] Kennedy M J, Löhr S C, Fraser S A, et al. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis[J]. Earth and Planetary Science Letters, 2014, 388: 59-70.
[69] Williams L B, Canfield B, Voglesonger K M, et al. Organic molecules formed in a “primordial womb”[J]. Geology, 2005, 33(11): 913-916.
[70] Dainyak L G, Drits V A, Zviagina B B, et al. Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales[J]. American Mineralogist, 2006, 91(4): 589-603.
[71] Bethke C M, Altaner S P. Layer-by-layer mechanism of smectite illitization and application to a new rate law[J]. Clays and Clay Minerals, 1986, 34(2): 136-145.
[72] Cuadros J, Altaner S P. Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods; constraints on the smectite-to-illite transformation mechanism[J]. American Mineralogist, 1998, 83(7/8): 762-774.
[73] Hoffman J, Hower J. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A.[M]//Scholle P A, Schluger P S. Aspects of diagenesis. Tulsa: SEPM Special Publication, 1979: 55-79.
[74] Lindgreen H, Hansen P L. Ordering of illite-smectite in Upper Jurassic claystones from the North Sea[J]. Clay Minerals, 1991, 26(1): 105-125.
[75] Buatier M D, Peacor D R, O’Neil J R. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature[J]. Clays and Clay Minerals, 1992, 40(1): 65-80.
[76] Dong H L, Peacor D R. TEM observations of coherent stacking relations in smectite, I/S and illite of shales: Evidence for MacEwan crystallites and dominance of 2M polytypism[J]. Clays and Clay Minerals, 1996, 44(2): 257-275.
[77] Środoń J, Eberl D D, Drits V A. Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism[J]. Clays and Clay Minerals, 2000, 48(4): 446-458.
[78] Freed R L, Peacor D R. Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates[J]. Journal of Sedimentary Research, 1992, 62(2): 220-234.
[79] Pollastro R M. Considerations and Applications of the Illite/Smectite Geothermometer in Hydrocarbon-Bearing Rocks of Miocene to Mississippian Age[J]. Clays and Clay Minerals, 1993, 41(2): 119-133.
[80] Merriman M F, Frey M. Patterns of very low‐grade metamorphism in metapelitic rocks[M]//Frey M, Robinson D. Low‐grade metamorphism. Oxford: Blackwell Science, 1998: 61-108.
[81] 李颖莉,蔡进功. 有机质对蒙脱石伊利石化作用的影响——来自热模拟实验的证据[C]//中国矿物岩石地球化学学会第15届学术年会论文摘要集(4). 长春:中国矿物岩石地球化学学会,2015:198-199. [[

Li Yingli, Cai Jingong. Effect of organic matter on illitization of smectite: evidence from thermal simulations[C]//Abstracts (4) of the 15th annual meeting of the Chinese Society of Mineral and rock Geochemistry. Changchun: Chinese Society of Mineralogy and Petrochemistry, 2015: 198-199.]]
[82] Wilson M J, Shaldybin M V, Wilson L. Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I. Occurrence and interpretation of mixed-layer R3 ordered illite/smectite[J]. Earth-Science Reviews, 2016, 158: 31-50.
[83] Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society A, 1985, 315(1531): 25-38.
[84] Raiswell R, Reinhard C T, Derkowski A, et al. Formation of syngenetic and early diagenetic iron minerals in the Late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1072-1087.
[85] Bond D P, Wignall P B. Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8): 1265-1279.
[86] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552.
[87] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
[88] Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1244-1263.
[89] Ye Y T, Wu C D, Zhai L N, et al. Pyrite morphology and episodic euxinia of the Ediacaran Doushantuo Formation in South China[J]. Science China Earth Sciences, 2017, 60(1): 102-113.
[90] Ardakani O H, Chappaz A, Sanei H, et al. Effect of thermal maturity on remobilization of molybdenum in black shales[J]. Earth and Planetary Science Letters, 2016, 449: 311-320.
[91] Fishman N S, Egenhoff S O, Lowers H A, et al. Pyritization history in the Late Cambrian alum shale, Scania, Sweden: Evidence for ongoing Diagenetic processes[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 83-102.
[92] Baumgartner R J, Van Kranendonk M J, Wacey D, et al. Nano- porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life[J]. Geology, 2019, 47(11): 1039-1043.
[93] LaFlamme C, Martin L, Jeon H, et al. In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models[J]. Chemical Geology, 2016, 444: 1-15.
[94] 杨蔚,胡森,张建超,等. 纳米离子探针分析技术及其在地球科学中的应用[J]. 中国科学(D辑):地球科学,2015,45(9):1335-1346.

Yang Wei, Hu Sen, Zhang Jianchao, et al. NanoSIMS analytical technique and its applications in earth sciences[J]. Science China (Seri.D):Earth Sciences, 2015, 45(9): 1335-1346.
[95] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[96] Tissot B, Durand B, Espitalie J, et al. Influence of nature and Diagenesis of organic matter in formation of petroleum[J]. AAPG Bulletin, 1974, 58(3): 499-506.
[97] Katz B J, Arango I. Organic porosity: A geochemist's view of the current state of understanding[J]. Organic Geochemistry, 2018, 123: 1-16.
[98] Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744.
[99] Reed R M. Organic-matter pores: New findings from Lower-thermal-maturity mudrocks[J]. GCAGS Journal, 2017, 6: 99-110.
[100] Han Y J, Horsfield B, Wirth R, et al. Oil retention and porosity evolution in organic-rich shales[J]. AAPG Bulletin, 2017, 101(6): 807-827.
[101] Ko L T, Loucks R G, Milliken K L, et al. Controls on pore types and pore-size distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for pore-evolution models of lacustrine mudrocks[J]. Interpretation, 2017, 5(2): SF127-SF148.
[102] Cardott B J, Landis C R, Curtis M E. Post-oil solid bitumen network in the Woodford Shale, USA: A potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139: 106-113.
[103] Bernard S, Horsfield B. Reply to comment on “Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)”[J]. International Journal of Coal Geology, 2014, 127: 114-115.
[104] Lu J M, Ruppel S C, Rowe H D. Organic matter pores and oil generation in the Tuscaloosa marine shale[J]. AAPG Bulletin, 2015, 99(2): 333-357.
[105] Hackley P C, Cardott B J. Application of organic petrography in North American shale petroleum systems: A review[J]. International Journal of Coal Geology, 2016, 163: 8-51.
[106] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
[107] Zhao J H, Jin Z J, Jin Z K, et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017, 86: 655-674.
[108] 李忠,刘嘉庆. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J]. 沉积学报,2009,27(5):837-848.

Li Zhong, Liu Jiaqing. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins[J]. Acta Sedimentologica Sinica, 2009, 27(5): 837-848.
[109] Arning E T, Van Berk W, Schulz H M. Fate and behaviour of marine organic matter during burial of anoxic sediments: Testing CH2O as generalized input parameter in reaction transport models[J]. Marine Chemistry, 2016, 178: 8-21.
[110] Prochnow E A, Remus M V D, Ketzer J M, et al. Organic-inorganic interactions in oilfield sandstones: Examples from turbidite reservoirs in the Campos Basin, offshore Eastern Brazil[J]. Journal of Petroleum Geology, 2006, 29(4): 361-380.
[111] Helgeson H C, Knox A M, Owens C E, et al. Petroleum, oil field waters, and authigenic mineral assemblages Are they in metastable equilibrium in hydrocarbon reservoirs[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3295-3339.
[112] Burdige D J. Temperature dependence of organic matter remineralization in deeply-buried marine sediments[J]. Earth and Planetary Science Letters, 2011, 311(3/4): 396-410.
[113] Arning E T, van Berk W, Schulz H M. Quantitative geochemical modeling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4012.
[114] Chow N, Morad S, Al-Aasm I S. Origin of Authigenic Mn-Fe carbonates and pore-water evolution in marine sediments: Evidence from cenozoic strata of the arctic ocean and Norwegian-Greenland Sea (Odp Leg 151)[J]. Journal of Sedimentary Research, 2000, 70(3): 682-699.
[115] Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
[116] Schulz H M, Wirth R, Schreiber A. Nano-crystal formation of TiO2 polymorphs Brookite and Anatase due to organic—inorganic rock–fluid interactions[J]. Journal of Sedimentary Research, 2016, 86(2): 59-72.
[117] Morse J W. Formation and diagenesis of carbonate sediments[J]. Treatise on Geochemistry, 2003, 7: 67-85.
[118] Worden R H, Burley S D. Sandstone diagenesis: The evolution of sand to stone[M]//Burley S D, Worden R D. Sandstone diagenesis: Recent and ancient. Malden: Blackwell, 2003.
[119] Emerson S, Jahnke R, Bender M, et al. Early diagenesis in sediments from the eastern equatorial Pacific, I. Pore water nutrient and carbonate results[J]. Earth and Planetary Science Letters, 1980, 49(1): 57-80.
[120] Carr A D. A vitrinite reflectance kinetic model incorporating overpressure retardation[J]. Marine and Petroleum Geology, 1999, 16(4): 355-377.
[121] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京:科学出版社, 2005.

Hao Fang. Kinetics of hydrocarbon generation and mechanisms of petroleum accumulation in overpressured Basins[M]. Beijing: Science Press, 2005.
[122] Baldwin B, Butler C O. Compaction curves[J]. AAPG Bulletin, 1985, 69(4): 622-626.
[123] Burst F J. Argillaceous sediment dewatering[J]. Annual Review of Earth and Planetary Sciences, 1976, 4: 293-318.
[124] Schieber J. SEM observations on ion-milled samples of Devonian black shales from Indiana and New York: The petrographic context of multiple pore types[M]//Camp W K, Diaz E. Electron microscopy of shale hydrocarbon reservoirs. Tulsa: AAPG, 2013: 153-171.
[125] Wang M, Chen Y, Song G Q, et al. Formation of bedding-parallel, fibrous calcite veins in laminated source rocks of the Eocene Dongying Depression: A growth model based on petrographic observations[J]. International Journal of Coal Geology, 2018, 200: 18-35.
[126] Yoon H, Ingraham M D, Grigg J, et al. Impact of depositional and diagenetic heterogeneity on multiscale mechanical behavior of Mancos Shale, New Mexico and Utah, USA[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 121-148.
[127] Hall C D. Compositional and diagenetic controls on brittleness in organic siliceous mudrocks[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 103-120.
[128] Gowd T N, Rummel F. Effect of confining pressure on the fracture behaviour of a porous rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(4): 225-229.
[129] 林卓英, 吴玉山, 关玲莉. 岩石在三轴压缩下脆—延性转化的研究[J]. 岩土力学, 1992, 13(2/3): 45-53.

Lin Zhuoying, Wu Yushan, Guan Lingli. Research on the brittle-ductile transition property of rocks under triaxial compression[J]. Rock and Soil Mechanics, 1992, 13(2/3): 45-53.
[130] 沈华章,王水林,刘泉声. 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学,2014,35(6):1647-1654.

Shen Huazhang, Wang Shuilin, Liu Quansheng. Simulation of constitutive curves for strain-softening rock in triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(6): 1647-1654.
[131] 袁玉松,刘俊新,周雁. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质,2018,39(5):899-906.

Yuan Yusong, Liu Junxin, Zhou Yan. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39(5): 899-906.
[132] 李忠,韩登林,寿建峰. 沉积盆地成岩作用系统及其时空属性[J]. 岩石学报,2006,22(8):2151-2164.

Li Zhong, Han Denglin, Shou Jianfeng. Diagenesis systems and their spatio-temporal attributes in sedimentary basins[J]. Acta Petrologica Sinica, 2006, 22(8): 2151-2164.
[133] English J M, Laubach S E. Opening-mode fracture systems: Insights from recent fluid inclusion microthermometry studies of crack-seal fracture cements[J]. Geological Society, London, Special Publications, 2017, 458(1): 257-272.
[134] Laubach S E, Eichhubl P, Hilgers C, et al. Structural diagenesis[J]. Journal of Structural Geology, 2010, 32(12): 1866-1872.
[135] Zhu X J, Cai J G, Wang Y S, et al. Evolution of organic-mineral interactions and implications for organic carbon occurrence and transformation in shale[J]. GSA Bulletin, 2020, 132(3/4): 784-792.
[136] Schmidt V, Mcdonald D A. The role of secondary porosity in the course of sandstone diagenesis[M]//Scholle P A, Schluger P R. Aspects of diagenesis. Tulsa: SEPM Special Publication, 1979:175-207.