[1] Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276.
[2] 高抒. 中国东部陆架全新世沉积体系:过程—产物关系研究进展评述[J]. 沉积学报,2013,31(5):845-855.

Gao Shu. Holocene sedimentary systems over the Bohai, Yellow and East China Sea region: Recent progress in the study of process-product relationships[J]. Acta Sedimentologica Sinica, 2013, 31(5): 845-855.
[3] 林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20.

Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20.
[4] Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
[5] 杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5):902-910.

Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902-910.
[6] 邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.

Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81.
[7] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
[8] 操应长,徐琦松,王健. 沉积盆地“源—汇”系统研究进展[J]. 地学前缘,2018,25(4):116-131.

Cao Yingchang, Xu Qisong, Wang Jian. Progress in “source-to-sink” system research[J]. Earth Science Frontiers, 2018, 25(4): 116-131.
[9] 朱筱敏,谈明轩,董艳蕾,等. 当今沉积学研究热点讨论:第20届国际沉积学大会评述[J]. 沉积学报,2019,37(1):1-16.

Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, et al. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress[J]. Acta Sedimentologica Sinica, 2019, 37(1): 1-16.
[10] 孙枢,王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报,2009,27(5):792-810.

Sun Shu, Wang Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-810.
[11] 石学法,刘升发,乔淑卿,等. 中国东部近海沉积物地球化学:分布特征、控制因素与古气候记录[J]. 矿物岩石地球化学通报,2015,34(5):883-894.

Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from eastern China seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 883-894.
[12] 王成善,王天天,陈曦,等. 深时古气候对未来气候变化的启示[J]. 地学前缘,2017,24(1):1-17.

Wang Chengshan, Wang Tiantian, Chen Xi, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017, 24(1): 1-17.
[13] Ruddiman W F. Earth’s climate: Past and future[M]. New York: W.H. Freeman & Sons, 2001: 576.
[14] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
[15] Gong C L, Sztanó O, Steel R J, et al. Critical differences in sediment delivery and partitioning between marine and lacustrine basins: A comparison of marine and lacustrine aggradational to progradational clinothem pairs[J]. GSA Bulletin, 2019, 131(5/6): 766-781.
[16] Mason C C, Fildani A, Gerber T, et al. Climatic and anthropogenic influences on sediment mixing in the Mississippi source-to-sink system using detrital zircons: Late Pleistocene to recent[J]. Earth and Planetary Science Letters, 2017, 466: 70-79.
[17] Fildani A, Hessler A M, Mason C C, et al. Late Pleistocene glacial transitions in North America altered major river drainages, as revealed by deep-sea sediment[J]. Scientific Reports, 2018, 8: 13839.
[18] Hessler A M, Covault J A, Stockli D F, et al. Late Cenozoic cooling favored glacial over tectonic controls on sediment supply to the western Gulf of Mexico[J]. Geology, 2018, 46(11): 995-998.
[19] Bernhardt A, Melnick D, Jara-Muñoz J, et al. Controls on submarine canyon activity during sea-level highstands: The Biobío canyon system offshore Chile[J]. Geosphere, 2015, 11(4): 1226-1255.
[20] Bernhardt A, Hebbeln D, Regenberg M, et al. Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin[J]. Geology, 2016, 44(4): 295-298.
[21] Bernhardt A, Schwanghart W, Hebbeln D, et al. Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin[J]. Earth and Planetary Science Letters, 2017, 473: 190-204.
[22] Pelletier J D, Murray A B, Pierce J L, et al. Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs[J]. Earth’s Future, 2015, 3(7): 220-251.
[23] 张功成,屈红军,张凤廉,等. 全球深水油气重大新发现及启示[J]. 石油学报,2019,40(1):1-34,55.

Zhang Gongcheng, Qu Hongjun, Zhang Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J]. Acta Petrolei Sinica, 2019, 40(1): 1-34, 55.
[24] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921.

Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
[25] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[26] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560-568.

Du Jinhu, Hu Suyun, Pang Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
[27] 姚檀栋,徐柏青,蒲健辰. 青藏高原古里雅冰芯记录的轨道、亚轨道时间尺度的气候变化[J]. 中国科学(D辑):地球科学,2001,31(增刊):287-294.

Yao Tandong, Xu Baiqing, Pu Jianchen. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2001, 31(Suppl.1): 287-294.
[28] 汪品先,田军,黄恩清,等. 地球系统与演变[M]. 北京:科学出版社,2018:379-412.

Wang Pinxian, Tian Jun, Huang Enqing, et al. Earth system and its evolution[M]. Beijing: Science Press, 2018: 379-412.
[29] Covault J A, Romans B W, Fildani A, et al. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system[J]. The Journal of Geology, 2010, 118(3): 247-259.
[30] Giresse P, Bassetti M A, Pauc H, et al. Sediment accumulation rates and turbidite frequency in the eastern Algerian margin. An attempt to examine the triggering mechanisms[J]. Sedimentary Geology, 2013, 294: 266-281.
[31] Sequeiros O E, Pittaluga M B, Frascati A, et al. How typhoons trigger turbidity currents in submarine canyons[J]. Scientific Reports, 2019, 9: 9220.
[32] Liu X T, Rendle-Bühring R, Henrich R. Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene[J]. Quaternary Science Reviews, 2016, 133: 15-27.
[33] Normandeau A, Bourgault D, Neumeier U, et al. Storm-induced turbidity currents on a sediment-starved shelf: Insight from direct monitoring and repeat seabed mapping of upslope migrating bedforms[J]. Sedimentology, 2020, 67(2): 1045-1068.
[34] Gong C L, Steel R J, Wang Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101.
[35] Vangriesheim A, Khripounoff A, Crassous P. Turbidity events observed in situ along the Congo submarine channel[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(23): 2208-2222.
[36] Sweet M L, Blum M D. Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deep water[J]. Journal of Sedimentary Research, 2016, 86(10): 1147-1162.
[37] Khripounoff A, Vangriesheim A, Crassous P, et al. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea)[J]. Marine Geology, 2009, 263(1/2/3/4): 1-6.
[38] Michels K H, Suckow A, Breitzke M, et al. Sediment transport in the shelf canyon “Swatch of No Ground” (Bay of Bengal)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(5): 1003-1022.
[39] Fournier L, Fauquembergue K, Zaragosi S, et al. The Bengal fan: External controls on the Holocene active channel turbidite activity[J]. The Holocene, 2017, 27(6): 900-913.
[40] Zhang F, Jin Z D, West A J, et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake[J]. Science Advance, 2019, 5(6): eaav7110.
[41] Vandekerkhove E, van Daele M, Praet N, et al. Flood-triggered versus earthquake-triggered turbidites: A sedimentological study in clastic lake sediments (Eklutna Lake, Alaska)[J]. Sedimentology, 2020, 67(1): 364-389.
[42] 陆钧,陈木宏. 新生代主要全球气候事件研究进展[J]. 热带海洋学报,2006,25(6):72-79.

Lu Jun, Chen Muhong. Global climate events since Cenozoic[J]. Journal of Tropical Oceanography, 2006, 25(6): 72-79.
[43] Holbourn A, Kuhnt M, Lyle L, et al. Middle Miocene climate cooling linked to intensification of eastern equatorial pacific upwelling[J]. Geology, 2014, 42(1): 19-22.
[44] Xu S H, Han J H, Wang Y M, et al. How much systems-tract scale, three-dimensional stratigraphic variability is present in sequence stratigraphy?: An answer from the Middle Miocene Pearl River Mouth Basin[J]. AAPG Bulletin, 2020, doi: 10.1306/0122201607417001.
[45] Gong C L, Blum M D, Wang Y M, et al. Can climatic signals be discerned in a deep-water sink?: An answer from the Pearl River source-to-sink sediment-routing system[J]. GSA Bulletin, 2018, 130(3/4): 661-677.
[46] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[47] 陈芳,苏新,周洋. 南海神狐海域水合物钻探区钙质超微化石生物地层与沉积速率[J]. 地球科学——中国地质大学学报,2013,38(1):1-9.

Chen Fang, Su Xin, Zhou Yang. Late Miocene-Pleistocene calcareous nannofossil biostratigraphy of Shenhu gas hydrate drilling area in the South China Sea and variations in sedimentation rates[J]. Earth Science—Journal of China University of Geoscience, 2013, 38(1): 1-9.
[48] Guo Z T, Berger A, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records[J]. Climate of the Past, 2009, 5(1): 21-31.
[49] Weber M E, Wiedicke M H, Kudrass H R, et al. Active growth of the Bengal Fan during sea-level rise and highstand[J]. Geology, 1997, 25(4): 315-318.
[50] Goodbred Jr S L, Kuehl S A. Enormous Ganges-Brahmaputra sediment discharge during strengthened Early Holocene monsoon[J]. Geology, 2000, 28(12): 1083-1086.
[51] Mason C C, Romans W B, Stockli D F, et al. Detrital zircons reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment transfer[J]. Geology, 2019, 47(6): 563-567.
[52] Jobe Z R, Sylvester Z, Parker A O, et al. Rapid adjustment of submarine channel architecture to changes in sediment supply[J]. Journal of Sedimentary Research, 2015, 85(6): 729-753.
[53] Clare M A, Talling P J, Hunt J E. Implications of reduced turbidity current and landslide activity for the Initial Eocene Thermal Maximum-evidence from two distal, deep-water sites[J]. Earth and Planetary Science Letters, 2015, 420: 102-115.
[54] Egger H, Fenner J, Heilmann-Clausen C, et al. Paleoproductivity of the northwestern Tethyan margin (Anthering section, Austria) across the Paleocene–Eocene transition[M]//Wing S L, Gingerich P D, Schmitz B, et al. Causes and consequences of globally warm climates in the Early Paleogene. Boulder: Geological Society of America, 2003: 133-146.
[55] Schmitz B, Pujalte V, Núñez-Betelu K. Climate and sea-level perturbations during the incipient Eocene thermal maximum: Evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), northern Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165(3/4): 299-320.
[56] Sømme T O, Skogseid J, Embry P, et al. Manifestation of tectonic and climatic perturbations in deep-time stratigraphy – an example from the Paleocene succession offshore western Norway[J]. Frontiers in Earth Science, 2019, 7: 303.
[57] 陈宇航,姚根顺,吕福亮,等. 东非鲁伍马盆地渐新统深水水道-朵体沉积特征及控制因素[J]. 石油学报,2017,38(9):1047-1058.

Chen Yuhang, Yao Genshun, Fuliang Lü, et al. Sedimentary characteristics and controlling factors of Oligocene deep-water channel-lobe in Rovuma Basin of the East Africa[J]. Acta Petrolei Sinica, 2017, 38(9): 1047-1058.
[58] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[59] Yu W S, Tsai L L, Talling J P, et al. Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan[J]. Marine Geology, 2017, 392: 140-150.
[60] Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8): 675-678.
[61] Sømme T O, Helland-Hansen W, Granjeon D. Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus Greenhouse systems[J]. Geology, 2009, 37(7): 587-590.
[62] Walsh J P, Wiberg P L, Aalto R, et al. Source-to-sink research: Economy of the Earth's surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6.
[63] Hodgson D M, Bernhardt A, Clare M A, et al. Grand challenges (and great opportunities) in sedimentology, stratigraphy, and diagenesis research[J]. Frontiers in Earth Science, 2018, 6: 173.
[64] Maslin M, Mikkelsen N, Vilela C, et al. Sea-level-and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan[J]. Geology, 1998, 26(12): 1107-1110.
[65] Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis[J]. Geology, 2004, 32(1): 53-56.
[66] Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393.
[67] Nisbet E G, Piper D J W. Giant submarine landslides[J]. Nature, 1998, 392(6674): 329-330.
[68] Owen M, Day S, Maslin M. Late Pleistocene submarine mass movements: Occurrence and causes[J]. Quaternary Science Reviews, 2007, 26(7/8): 958-978.
[69] Lee H J. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin[J]. Marine Geology, 2009, 264(1/2): 53-64.
[70] Grozic J L H. Interplay between gas hydrates and submarine slope failure[M]//Mosher D C, Shipp R C, Moscardelli L, et al. Submarine mass movements and their consequences. Dordrecht: Springer, 2010: 11-30.
[71] Brothers D S, Luttrell K M, Chaytor J D. Sea-level–induced seismicity and submarine landslide occurrence[J]. Geology, 2013, 41(9): 979-982.
[72] Urlaub M, Talling P J, Masson D G. Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard[J]. Quaternary Science Reviews, 2013, 72: 63-82.
[73] Urlaub M, Talling P J, Clare M. Sea-level-induced seismicity and submarine landslide occurrence: COMMENT[J]. Geology, 2014, 42(6): e337.
[74] Bonneau L, Jorry S J, Toucanne S, et al. Millennial-scale response of a western Mediterranean River to Late Quaternary climate changes: A view from the deep sea[J]. The Journal of Geology, 2014, 122(6): 687-703.
[75] Bondevik S, Stormo S K, Skjerdal G. Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event[J]. Quaternary Science Reviews, 2012, 45: 1-6.
[76] Berndt C, Costa S, Canals M, et al. Repeated slope failure linked to fluid migration: The Ana submarine landslide complex, Eivissa Channel, western Mediterranean Sea[J]. Earth and Planetary Science Letters, 2012, 319-320: 65-74.
[77] Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation[J]. Nature Communications, 2018, 9: 715.
[78] Kvalstad T J, Andresen L, Forsberg C F, et al. The Storegga slide: Evaluation of triggering sources and slide mechanics[J]. Marine and Petroleum Geology, 2005, 22(1/2): 245-256.
[79] Vanneste M, Mienert J, Bünz S. The hinlopen slide: A giant, submarine slope failure on the northern Svalbard margin, arctic ocean[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 373-388.
[80] Talling P J, Clare M, Urlaub E, et al. Large submarine landslides on continental slopes: Geohazards, methane release, and climate change[J]. Oceanography, 2014, 27(2): 32-45.
[81] Paull C K, Ussler III W, Holbrook W S. Assessing methane release from the colossal storegga submarine landslide[J]. Geophysical Research Letters, 2007, 34(4): L04601.
[82] Kremer K, Corella J P, Adatte T, et al. Origin of turbidites in deep lake geneva (france⁃switzerland) in the last 1500 years[J]. Journal of Sedimentary Research, 2015, 85(12): 1455-1465.
[83] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
[84] 杨田,操应长,王艳忠,等. 异重流沉积动力学过程及沉积特征[J]. 地质论评,2015,61(1):23-33.

Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33.