[1] Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137.
[2] Amthor J E, Grotzinger J P, Schröder S, et al. Extinction of cloudina and namacalathus at the Precambrian-Cambrian boundary in Oman[J]. Geology, 2003, 31(5): 431-434.
[3] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459.
[4] Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6: 7142.
[5] Sahoo S K, Planavsky N J, Jiang G, et al. Oceanic oxygenation events in the anoxic Ediacaran ocean[J]. Geobiology, 2016, 14(5): 457-468.
[6] Och L M, Shields-Zhou G A, Poulton S W, et al. Redox changes in early Cambrian black shales at Xiaotan section, Yunnan pro-vince, South China[J]. Precambrian Research, 2013, 225: 166-189.
[7] Pi D H, Liu C Q, Shields-Zhou G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229.
[8] Wang D, Ling H F, Struck U, et al. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J]. Nature Communications, 2018, 9(1): 2575.
[9] Chang C, Wang Z F, Huang K J, et al. Nitrogen cycling during the peak Cambrian explosion[J]. Geochimica et Cosmochimica Acta, 2022, 336: 50-61.
[10] Ader M, Thomazo C, Sansjofre P, et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives[J]. Chemical Geology, 2016, 429: 93-110.
[11] Chen Y, Diamond C W, Stüeken E E, et al. Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze Block across the Ediacaran-Cambrian transition[J]. Geochimica et Cosmochimica Acta, 2019, 257: 243-265.
[12] Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science, 2002, 297(5584): 1137-1142.
[13] Anbar A D, Duan Y, Lyons T W, et al. A whiff of oxygen before the Great Oxidation Event?[J]. Science, 2007, 317(5846): 1903-1906.
[14] Ader M, Sansjofre P, Halverson G P, et al. Ocean redox structure across the Late Neoproterozoic oxygenation event: A nitrogen isotope perspective[J]. Earth and Planetary Science Letters, 2014, 396: 1-13.
[15] Cremonese L, Shields-Zhou G A, Struck U, et al. Nitrogen and organic carbon isotope stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian transition in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 165-186.
[16] Kikumoto R, Tahata M, Nishizawa M, et al. Nitrogen isotope chemostratigraphy of the Ediacaran and early Cambrian platform sequence at Three Gorges, South China[J]. Gondwana Research, 2014, 25(3): 1057-1069.
[17] Li C, Cheng M, Zhu M Y, et al. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution[J]. Emerging Topics in Life Sciences, 2018, 2(2): 279-288.
[18] 杨桦. 埃迪卡拉纪—寒武纪之交南华盆地深水氧化还原状态[D]. 贵阳:贵州师范大学,2023:13-122.

Yang Hua. Redox condition of deepwater in the Nanhua Basin at the Ediacaran-Cambrian transition[D]. Guiyang: Guizhou Normal University, 2023: 13-122.
[19] Li C, Zhang Z H, Jin C S, et al. Spatiotemporal evolution and causes of marine euxinia in the early Cambrian Nanhua Basin (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109676.
[20] Zhang S H, Li H Y, Jiang G Q, et al. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications[J]. Precambrian Research, 2015, 259: 130-142.
[21] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[22] 王剑,刘宝珺,潘桂棠. 华南新元古代裂谷盆地演化:Rodinia超大陆解体的前奏[J]. 矿物岩石,2001,21(3):135-145.

Wang Jian, Liu Baojun, Pan Guitang. Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 135-145.
[23] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
[24] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
[25] Jiang G Q, Wang X Q, Shi X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze Platform[J]. Earth and Planetary Science Letters, 2012, 317-318: 96-110.
[26] 陈代钊,汪建国,严德天,等. 中扬子地区早寒武世构造—沉积样式与古地理格局[J]. 地质科学,2012,47(4):1052-1070.

Chen Daizhao, Wang Jianguo, Yan Detian, et al. Tectono-depositional patterns and palaeogeography in the Middle Yangtze River region during the early Cambrian[J]. Chinese Journal of Geology, 2012, 47(4): 1052-1070.
[27] Wang J G, Chen D Z, Yan D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306-307: 129-138.
[28] Chen D Z, Zhou X Q, Fu Y, et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 2015, 27(1): 62-68.
[29] 金承胜,李超,彭兴芳,等. 华南寒武纪早期海洋化学状态的时空波动[J]. 中国科学:地球科学,2014,44(5):851-863.

Jin Chengsheng, Li Chao, Peng Xingfang, et al. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China[J]. Science China: Earth Sciences, 2014, 44(5): 851-863.
[30] Wang D, Struck U, Ling H F, et al. Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform, South China: Evidence from nitrogen and organic carbon isotopes[J]. Precambrian Research, 2015, 267: 209-226.
[31] Xu L G, Lehmann B, Mao J W, et al. Re-Os age of polymetallic Ni–Mo–PGE-Au mineralization in early Cambrian black shales of South China: A reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
[32] Wu Y W, Tian H, Jia W L, et al. Nitrogen isotope evidence for stratified ocean redox structure during Late Ediacaran to Cambrian Age 3 in the Yangtze Block of South China[J]. Chemical Geology, 2022, 589: 120679.
[33] 朱茂炎,孙智新,杨爱华,等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3):223-249.

Zhu Maoyan, Sun Zhixin, Yang Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 223-249.
[34] Yang C, Li X H, Zhu M Y, et al. Geochronological constraint on the Cambrian Chengjiang biota, South China[J]. Journal of the Geological Society, 2018, 175(4): 659-666.
[35] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC0 00109.
[36] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
[37] McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[38] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[39] 张明亮,郭伟,沈俊,等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报,2017,36(4):95-106.

Zhang Mingliang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
[40] Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26.
[41] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642.
[42] Piper D Z, Perkins R B. A modern vs. Permian black shale: The hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
[43] Piper D Z, Calvert S E. A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews, 2009, 95(1/2): 63-96.
[44] Scott C, Lyons T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies[J]. Chemical Geology, 2012, 324-325: 19-27.
[45] 常华进,储雪蕾,黄晶,等. 埃迪卡拉纪末期华南盆地深水环境的微量元素约束[J]. 兰州大学学报(自然科学版),2011,47(5):17-23,29.

Chang Huajin, Chu Xuelei, Huang Jing, et al. Trace element constraints on deep-water redox conditions of the terminal Ediacaran in South China Basin[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(5): 17-23,29.
[46] Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
[47] Liu Y, Magnall J M, Gleeson S A, et al. Spatio-temporal evolution of ocean redox and nitrogen cycling in the early Cambrian Yangtze ocean[J]. Chemical Geology, 2020, 554: 119803.
[48] Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): PA4203.
[49] Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239.
[50] Calvert S E. Beware intercepts: Interpreting compositional ratios in multi-component sediments and sedimentary rocks[J]. Organic Geochemistry, 2004, 35(8): 981-987.
[51] Sigman D M, Karsh K L, Casciotti K L. Nitrogen isotopes in the ocean[M]//Steele J H, Thorpe S A, Turekian K K. Encyclopedia of ocean sciences. 2nd ed. San Diego: Academic Press, 2009: 40-54.
[52] Cremonese L, Shields-Zhou G, Struck U, et al. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section, South China[J]. Precambrian Research, 2013, 225: 148-165.
[53] Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
[54] Xu L G, Lehmann B, Mao J W, et al. Mo isotope and trace element patterns of lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319: 45-59.
[55] Xing J Q, Jiang Y H, Xian H Y, et al. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: A micro- and nano-scale mineralogical study[J]. Ore Geology Reviews, 2021, 136: 104224.
[56] 赵瞻,谢渊,刘建清,等. 渝东南下寒武统黑色岩系稀土元素地球化学特征与沉积环境[J]. 沉积与特提斯地质,2011,31(2):49-54.

Zhao Zhan, Xie Yuan, Liu Jianqing, et al. REE geochemical signatures and sedimentary environments of the lower Cambrian black rock series in southeastern Chongqing and its adjacent areas[J]. Sedimentary Geology and Tethyan Geology, 2011, 31(2): 49-54.
[57] Wang N, Li M J, Tian X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in lower Cambrian black shale in the Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120: 104570.
[58] 曹光耀,刘宇,侯明才,等. 川南威远地区早寒武世氮循环及古环境意义[J]. 沉积学报,2024,42(6):2031-2041.

Cao Guangyao, Liu Yu, Hou Mingcai, et al. Nitrogen cycle and paleoenvironmental implications in the Weiyuan area, southern Sichuan during the early Cambrian[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2031-2041.
[59] 何洪茜,肖加飞,杨海英,等. 黔北地区下寒武统牛蹄塘组泥岩沉积环境及页岩气勘探潜力[J]. 沉积与特提斯地质,2024,44(2):267-277.

He Hongxi, Xiao Jiafei, Yang Haiying, et al. Sedimentary environment and shale gas exploration potential of lower Cambrian Niutitang Formation in northern Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(2): 267-277.
[60] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[61] 祝庆敏,卢龙飞,潘安阳,等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质,2021,43(5):797-809,854.

Zhu Qingmin, Lu Longfei, Pan Anyang, et al. Sedimentary environment and organic matter enrichment of the lower Cambrian Niutitang Formation shale, western Hunan pro-vince, China[J]. Petroleum Geology & Experiment, 2021, 43(5): 797-809, 854.
[62] 朱艳宸,李丽,王鹏,等. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展,2020,35(2):167-179.

Zhu Yanchen, Li Li, Wang Peng, et al. Progress in the study of marine stable nitrogen isotopic changes and its geological records[J]. Advances in Earth Science, 2020, 35(2): 167-179.
[63] 舒德干. 寒武纪大爆发与动物树的成型[J]. 地球科学与环境学报,2009,31(2):111-134.

Shu Degan. Cambrian explosion: Formation of tree of animals[J]. Journal of Earth Sciences and Environment, 2009, 31(2): 111-134.
[64] Steiner M, Zhu M Y, Zhao Y L, et al. Lower Cambrian Burgess Shale-type fossil associations of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1/2): 129-152.
[65] Steiner M, Li G X, Qian Y, et al. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
[66] 朱茂炎. 动物的起源和寒武纪大爆发:来自中国的化石证据[J]. 古生物学报,2010,49(3):269-287.

Zhu Maoyan. The origin and Cambrian explosion of animals: Fossil evidences from China[J]. Acta Palaeontologica Sinica, 2010, 49(3): 269-287.
[67] Hammarlund E U, Gaines R R, Prokopenko M G, et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang[J]. Earth and Planetary Science Letters, 2017, 475: 160-168.
[68] Wang H Z, Wang D, Wei G Y, et al. Increases in marine environmental heterogeneity during the early animal innovations: Evidence from nitrogen isotopes in South China[J]. Precambrian Research, 2022, 369: 106501.
[69] Xu D T, Wang X Q, Shi X Y, et al. Nitrogen cycle perturbations linked to metazoan diversification during the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109392.