[1] |
张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119.
Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119. |
[2] |
柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828-838.
Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in First member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. |
[3] |
操应长,梁超,韩豫,等. 基于物质来源及成因的细粒沉积岩分类方案探讨[J]. 古地理学报,2023,25(4):729-741.
Cao Yingchang, Liang Chao, Han Yu, et al. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis[J]. Journal of Palaeogeography, 2023, 25(4): 729-741. |
[4] |
王浡,石巨业,朱如凯,等. 天文周期驱动下湖相细粒沉积岩有机质富集模式:以东营凹陷LY1井沙三下—沙四上亚段为例[J]. 沉积学报,2025,43(2):750-768.
Wang Bo, Shi Juye, Zhu Rukai, et al. Organic matter enrichment model of lacustrine fine-grained sedimentary rocks driven by astronomical cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag[J]. Acta Sedimentologica Sinica, 2025, 43(2): 750-768. |
[5] |
Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy Astrophysics, 2004, 428(1): 261-285. |
[6] |
吴怀春,张世红,黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘,2008,15(4):159-169.
Wu Huaichun, Zhang Shihong, Huang Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of northeast China[J]. Earth Science Frontiers, 2008, 15(4): 159-169. |
[7] |
石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214.
Shi Juye, Jin Zhijun, Liu Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil Gas Geology, 2019, 40(6): 1205-1214. |
[8] |
张坦,张昌民,瞿建华,等. 基于米兰科维奇理论的高频沉积旋回识别与对比:以准噶尔盆地玛湖凹陷百口泉组为例[J]. 东北石油大学学报,2017,41(5):54-61.
Zhang Tan, Zhang Changmin, Qu Jianhua, et al. Identification and comparison of high frequency cycles based on Milankovitch theory: A case study of Baikouquan Formation in Mahu Depression, Junggar Basin[J]. Journal of Northeast Petroleum University, 2017, 41(5): 54-61. |
[9] |
孙善勇,刘惠民,操应长,等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义:以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报,2017,46(4):846-858.
Sun Shanyong, Liu Huimin, Cao Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its signi-ficance to shale oil: A case study of the upper Es4 member of well NY1 in Dongying Sag[J]. Journal of China University of Mining Technology, 2017, 46(4): 846-858. |
[10] |
Huang H, Gao Y, Ma C, et al. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489. |
[11] |
Westerhold T, Röhl U. High resolution cyclostratigraphy of the Early Eocene: New insights into the origin of the Cenozoic cooling trend[J]. Climate of the Past, 2009, 5(3): 309-327. |
[12] |
Walters A P, Tierney J E, Zhu J, et al. Climate system asymmetries drive eccentricity pacing of hydroclimate during the Early Eocene greenhouse[J]. Science Advances, 2023, 9(31): eadg8022. |
[13] |
刘惠民,杨怀宇,张鹏飞,等. 古湖泊水介质条件对混积岩相组合沉积的控制作用:以渤海湾盆地东营凹陷古近系沙河街组三段为例[J]. 石油与天然气地质,2022,43(2):297-306.
Liu Huimin, Yang Huaiyu, Zhang Pengfei, et al. Control effect of paleolacustrine water conditions on mixed lithofacies assemblages: A case study of the Palaeogene Es 3, Dongying Sag, Bohai Bay Basin[J]. Oil Gas Geology, 2022, 43(2): 297-306. |
[14] |
黎茂稳,马晓潇,金之钧,等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质,2022,43(1):1-25.
Li Maowen, Ma Xiaoxiao, Jin Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil Gas Geology, 2022, 43(1): 1-25. |
[15] |
杨勇强,邱隆伟,姜在兴,等. 东营凹陷沙四上亚段滩坝物源体系[J]. 吉林大学学报(地球科学版),2011,41(1):46-53.
Yang Yongqiang, Qiu Longwei, Jiang Zaixing, et al. Beach bar-provenance system on the upper part of Fourth member of Shahejie Formation, in Dongying Sag[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 46-53. |
[16] |
张超,张立强,陈家乐,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别[J]. 天然气地球科学,2017,28(5):713-723.
Zhang Chao, Zhang Liqiang, Chen Jiale, et al. Lithofacies types and discrimination of Paleogene fine-grained sedimentary rocks in the Dongying Sag, Bohai Bay Basin, China[J]. Natural Gas Geoscience, 2017, 28(5): 713-723. |
[17] |
田继军,姜在兴. 东营凹陷沙河街组四段上亚段层序地层特征与沉积体系演化[J]. 地质学报,2009,83(6):836-846.
Tian Jijun, Jiang Zaixing. Sequence stratigraphy characteristics and sedimentary system evolution of upper Es 4 in the Dongying Depression[J]. Acta Geologica Sinica, 2009, 83(6): 836-846. |
[18] |
郭兴伟,施小斌,丘学林,等. 济阳坳陷新生代构造沉降特征[J]. 中国石油大学学报(自然科学版),2006,30(3):6-11.
Guo Xingwei, Shi Xiaobin, Qiu Xuelin, et al. Characteristics of Cenozoic tectonic subsidence in Jiyang Depression[J]. Journal of China University of Petroleum (Natural Science Edition), 2006, 30(3): 6-11. |
[19] |
盛文波,操应长,刘晖,等. 东营凹陷古近纪控盆断层演化特征及盆地结构类型[J]. 石油与天然气地质,2008,29(3):290-296.
Sheng Wenbo, Cao Yingchang, Liu Hui, et al. Evolutionary characteristics of the Palaeogene basin-controlling boundary faults and types of basin architectures in the Dongying Sag[J]. Oil Gas Geology, 2008, 29(3): 290-296. |
[20] |
刘惠民,张顺,王学军,等. 陆相断陷盆地页岩岩相组合类型及特征:以济阳坳陷东营凹陷沙四上亚段页岩为例[J]. 地球科学,2023,48(1):30-48.
Liu Huimin, Zhang Shun, Wang Xuejun, et al. Types and characteristics of shale lithofacies combinations in continental faulted basins: A case study from upper sub-member of Es4 in Dongying Sag, Jiyang Depression[J]. Earth Science, 2023, 48(1): 30-48. |
[21] |
Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
[22] |
Krumbein W C. The mechanical analysis of fine-grained sediments[J]. Journal of Sedimentary Research, 1932, 2(3): 140-149. |
[23] |
周立宏,蒲秀刚,陈长伟,等. 陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例[J]. 地球科学,2018,43(10):3625-3639.
Zhou Lihong, Pu Xiugang, Chen Changwei, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the Second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639. |
[24] |
刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555.
Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4 [J]. Earth Science, 2020, 45(10): 3543-3555. |
[25] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘,2014,21(2):48-66.
Huang Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66. |
[26] |
Hinnov L A, Park J J. Strategies for assessing Early-Middle (Pliensbachian-Aalenian) Jurassic cyclochronologies[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1757): 1831-1859. |
[27] |
Ikeda M, Tada R. Long Period astronomical cycles from the Triassic to Jurassic bedded chert sequence (Inuyama, Japan); geologic evidences for the chaotic behavior of solar planets[J]. Earth, Planets and Space, 2013, 65(4): 351-360. |
[28] |
Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734. |
[29] |
Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. |
[30] |
Li M S, Hinnov L A, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers Geosciences, 2019, 127: 12-22. |