[1] Li S J, Wang X C, Li C F, et al. Direct rubidium-strontium dating of hydrocarbon charge using small authigenic illitic clay aliquots from the Silurian bituminous sandstone in the Tarim Basin, NW China[J]. Scientific Reports, 2019, 9(1): 12565.
[2] Kralik M. Interpretation of K-Ar and Rb-Sr data from fine fractions of weakly metamorphosed shales and carbonate rocks at the base of the northern calcareous Alps (Salzburg, Austria)[J]. Tschermaks Mineralogische und Petrographische Mitteilungen, 1983, 32(1): 49-67.
[3] Li Q, Parrish R R, Horstwood M S A, et al. U–Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83.
[4] Ravizza G, Turekian K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3257-3262.
[5] 尹露,李杰,赵佩佩,等. 一种新的适合富有机质沉积岩的Re-Os同位素分析方法初探[J]. 地球化学,2015,44(3):225-237.

Yin Lu, Li Jie, Zhao Peipei, et al. A new method for analysis of Re-Os isotopic system in organic-rich sediments[J]. Geochimica, 2015, 44(3): 225-237.
[6] 覃曼,周瑶琪,刘加召,等. 铼—锇同位素体系定年研究综述[J]. 地质找矿论丛,2017,32(3):421-427.

Qin Man, Zhou Yaoqi, Liu Jiazhao, et al. Review of Re-Os geochronology[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(3): 421-427.
[7] Odin G S, Matter A. De glauconiarum origine[J]. Sedimentology, 1981, 28(5): 611-641.
[8] Amorosi A. The glaucony-bearing horizon of the Lower Miocene Bisciaro Formation (Umbria-Marche Apennines)[J]. Giornale di Geologia, 1994, 56(1): 7-16.
[9] Deb S P, Fukuoka M. Fe-illites in a Proterozoic deep marine slope deposit in the Penganga group of the pranhita Godavari valley: Their origin and environmental significance[J]. The Journal of Geology, 1998, 106(6): 741-750.
[10] El Albani A, Meunier A, Fürsich F. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France)[J]. Terra Nova, 2005, 17(6): 537-544.
[11] Amorosi A, Sammartino I, Tateo F. Evolution patterns of glaucony maturity: A mineralogical and geochemical approach[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/12/13): 1364-1374.
[12] Bandopadhyay P C. Interpretation of authigenic vs. allogenic green peloids of ferric clay in the Proterozoic Penganga Group, southern India[J]. Clay Minerals, 2007, 42(4): 471-485.
[13] Banerjee S, Chattoraj S L, Saraswati P K, et al. Substrate control on Formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India[J]. Marine and Petroleum Geology, 2012, 30(1): 144-160.
[14] Banerjee S, Bansal U, Thorat A V. A review on palaeogeographic implications and temporal variation in glaucony composition[J]. Journal of Palaeogeography, 2016, 5(1): 43-71.
[15] Chattoraj S L, Banerjee S, Saraswati P K. Glauconites from the Late Palaeocene—Early Eocene Naredi Formation, western Kutch and their genetic implications[J]. Journal of the Geological Society of India, 2009, 73(4): 567.
[16] McRae S G. Glauconite[J]. Earth-Science Reviews, 1972, 8(4): 397-440.
[17] Smith P E, Evensen N M, York D, et al. Single-grain 40Ar-39Ar ages of glauconies: Implications for the geologic time scale and global sea level variations[J]. Science, 1998, 279(5356): 1517-1519.
[18] Clauer N, Huggett J M, Hillier S. How reliable is the K-Ar glauconite chronometer? A case study of Eocene sediments from the Isle of Wight[J]. Clay Minerals, 2005, 40(2): 167-176.
[19] Clauer N, Keppens E, Stille P. Sr isotopic constraints on the process of glauconitization[J]. Geology, 1992, 20(2): 133-136.
[20] Odin G S. Numerical dating in stratigraphy[M]. Chichester: John Wiley & Sons, 1982.
[21] Hurley P M, Cormier R F, Hower J, et al. Reliability of glauconite for age measurement by K-Ar and Rb-Sr methods[J]. AAPG Bulletin, 1960, 44(11): 1793-1808.
[22] Thompson G R, Hower J. An explanation for low radiometric ages from glauconite[J]. Geochimica et Cosmochimica Acta, 1973, 37(6): 1473-1491.
[23] Derkowski A, Środoń J, Franus W, et al. Partial dissolution of glauconitic samples: Implications for the methodology of K-Ar and Rb-Sr dating[J]. Clays and Clay Minerals, 2009, 57(5): 531-554.
[24] Rousset D, Leclerc S, Clauer N, et al. Age and origin of Albian glauconites and associated clay minerals inferred from a detailed geochemical analysis[J]. Journal of Sedimentary Research, 2004, 74(5): 631-642.
[25] Brereton N R, Hooker P J, Miller J A. Some conventional potassium-argon and 40Ar/39Ar age studies of glauconite[J]. Geological Magazine, 1976, 113(4): 329-340.
[26] Smith P E, Evensen N M, York D. First successful 40Ar-39Ar dating of glauconies: Argon recoil in single grains of cryptocrystalline material[J]. Geology, 1993, 21(1): 41-44.
[27] Meunier A, Velde B D. Illite: Origins, evolution and metamorphism[M]. Berlin Heidelberg: Springer-Verlag, 2004.
[28] Yoder H S, Eugster H P. Synthetic and natural muscovites[J]. Geochimica et Cosmochimica Acta, 1955, 8(5/6): 225-242, IN1-IN2, 243-258, IN3, 259-280.
[29] Haines S H, van der Pluijm B A. Clay quantification and Ar–Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico[J]. Journal of Structural Geology, 2008, 30(4): 525-538.
[30] Meunier A, Velde B, Zalba P. Illite K-Ar dating and crystal growth processes in diagenetic environments: A critical review[J]. Terra Nova, 2004, 16(5): 296-304.
[31] Ferrage E, Vidal O, Mosser-Ruck R, et al. A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy[J]. American Mineralogist, 2011, 96(1): 207-223.
[32] Pevear D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences, 1999, 96(7): 3440-3446.
[33] Clauer N, Środoń J, Francu J, et al. K-Ar dating of illite fundamental particles separated from illite-smectite[J]. Clay Minerals, 1997, 32(2): 181-196.
[34] Tohver E, Weil A B, Solum J G, et al. Direct dating of carbonate remagnetization by 40Ar/39Ar analysis of the smectite–illite transformation[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 524-530.
[35] Zwingmann H, Mancktelow N, Antognini M, et al. Dating of shallow faults: New constraints from the AlpTransit tunnel site (Switzerland)[J]. Geology, 2010, 38(6): 487-490.
[36] Hyodo H. Laser probe 40Ar/39Ar dating: History and development from a technical perspective[J]. Gondwana Research, 2008, 14(4): 609-616.
[37] Nadeau P H, Wilson M J, McHardy W J, et al. Interstratified clays as fundamental particles[J]. Science, 1984, 225(4665): 923-925.
[38] Eberl D D, Drits V A, Srodon J. Deducing growth mechanisms for minerals from the shapes of crystal size distributions[J]. American Journal of Science, 1998, 298(6): 499-533.
[39] Eberl D D, Kile D E, Drits V A. On geological interpretations of crystal size distributions: Constant vs. proportionate growth[J]. American Mineralogist, 2002, 87(8/9): 1235-1241.
[40] Clauer N. Towards an isotopic modeling of the illitization process based on data of illite-type fundamental particles from mixed-layer illite-smectite[J]. Clays and Clay Minerals, 2006, 54(1): 116-127.
[41] Środoń J. Extracting K-Ar ages from shales: A theoretical test[J]. Clay Minerals, 1999, 34(2): 375-378.
[42] Zwingmann H, Clauer N, Gaupp R. Structure-related geochemical (REE) and isotopic (K-Ar, Rb-Sr, δ18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany)[J]. Geochimica et Cosmochimica Acta, 1999, 63(18): 2805-2823.
[43] Clauer N, Williams L B, Fallick A E. Genesis of nanometric illite crystals elucidated by light-element (hydrogen, lithium, boron and oxygen) isotope tracing, and K-Ar and Rb-Sr dating[J]. Chemical Geology, 2014, 383: 26-50.
[44] Clauer N, Zwingmann H, Liewig N, et al. Comparative 40Ar/39Ar and K–Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115(1/2): 76-96.
[45] Kligfield R, Hunziker J, Dallmeyer R D, et al. Dating of deformation phases using K-Ar and 40Ar/39Ar techniques: Results from the northern Apennines[J]. Journal of Structural Geology, 1986, 8(7): 781-798.
[46] Dong H L, Hall C M, Peacor D R, et al. Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating[J]. Science, 1995, 267(5196): 355-359.
[47] Girard J P, Savin S M, Aronson J L. Diagenesis of the Lower Cretaceous arkoses of the Angola margin: Petrologic, K/Ar dating and 18O/16O evidence[J]. Journal of Sedimentary Research, 1989, 59(4): 519-538.
[48] Maraschin A J, Mizusaki A M P, De Ros L F. Near-surface K-feldspar precipitation in Cretaceous sandstones from the Potiguar Basin, northeastern brazil[J]. The Journal of Geology, 2004, 112(3): 317-334.
[49] Mark D F, Parnell J, Kelley S P, et al. 40Ar/39Ar dating of oil generation and migration at complex continental margins[J]. Geology, 2010, 38(1): 75-78.
[50] Sibley D F. K-feldspar cement in the Jacobsville Sandstone[J]. Journal of Sedimentary Research, 1978, 48(3): 983-985.
[51] Ali A D, Turner P. Authigenic K-feldspar in the Bromsgrove Sandstone Formation (Triassic) of ccntral England[J]. Journal of Sedimentary Research, 1982, 52(1): 187-197.
[52] de Ros L F, Sgarbi G N C, Morad S. Multiple authigenesis of K-feldspar in sandstones; evidence from the Cretaceous Areado Formation, Sao Francisco Basin, central Brazil[J]. Journal of Sedimentary Research, 1994, 64(4a): 778-787.
[53] Sandler A, Harlavan Y, Steinitz G. Early Formation of K‐feldspar in shallow‐marine sediments at near‐surface temperatures (southern Israel): Evidence from K‐Ar dating[J]. Sedimentology, 2004, 51(2): 323-338.
[54] Fischer C, Dunkl I, von Eynatten H, et al. Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany)[J]. Geological Magazine, 2012, 149(5): 827-840.
[55] Hagen E, Kelley S P, Dypvik H, et al. Direct dating of authigenic K-feldspar overgrowths from the Kilombero Rift of Tanzania[J]. Journal of the Geological Society, 2001, 158(5): 801-807.
[56] Kelley S P, Arnaud N O, Turner S P. High spatial resolution 40Ar39Ar investigations using an ultra-violet laser probe extraction technique[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3519-3525.
[57] Girard J P, Onstott T C. Application of 40Ar39Ar laser-probe and step-heating techniques to the dating of diagenetic K-feldspar overgrowths[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3777-3793.
[58] Godeau N, Deschamps P, Guihou A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: Case of the Urgonian Limestone, France[J]. Geology, 2018, 46(3): 247-250.
[59] 王琪,郝乐伟,陈国俊,等. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理[J]. 石油学报,2010,31(4):553-558,565.

Wang Qi, Hao Lewei, Chen Guojun, et al. Forming mechanism of carbonate cements in siliciclastic sandstone of Zhuhai Formation in Baiyun Sag[J]. Acta Petrolei Sinica, 2010, 31(4): 553-558, 565.
[60] Roberts N M W, Walker R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534.
[61] Nuriel P, Weinberger R, Kylander-Clark A R C, et al. The onset of the Dead Sea transform based on calcite age-strain analyses[J]. Geology, 2017, 45(7): 587-590.
[62] 郭小文,陈家旭,袁圣强,等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束:以渤海湾盆地东营凹陷为例[J]. 石油学报,2020,41(3):284-291.

Guo Xiaowen, Chen Jiaxu, Yuan Shengqiang, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: A case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 284-291.
[63] Volery C, Davaud E, Durlet C, et al. Microporous and tight limestones in the Urgonian Formation (Late Hauterivian to early Aptian) of the French Jura Mountains: Focus on the factors controlling the Formation of microporous facies[J]. Sedimentary Geology, 2010, 230(1/2): 21-34.
[64] Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA‐ICP‐MS U‐Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807-2814.
[65] Blaise T, Clauer N, Cathelineau M, et al. Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals[J]. Geochimica et Cosmochimica Acta, 2016, 176: 157-184.
[66] Holliger P, Pagel M, Pironon J. A model for 238U radioactive daughter loss from sediment-hosted pitchblende deposits and the Late Permian-early Triassic depositional U-Pb age of the Müllenbach uranium ore (Baden-Württemberg, F.R.G.)[J]. Chemical Geology: Isotope Geoscience Section, 1989, 80(1): 45-53.
[67] Romer R L. Lead incorporation during crystal growth and the misinterpretation of geochronological data from low‐238U/204Pb metamorphic minerals[J]. Terra Nova, 2001, 13(4): 258-263.
[68] Ludwig K R, Grauch R I, Nutt C J, et al. Age of uranium mineralization at the Jabiluka and Ranger deposits, northern Territory, Australia; new U-Pb isotope evidence[J]. Economic Geology, 1987, 82(4): 857-874.
[69] Maas R. Nd-Sr isotope constraints on the age and origin of unconformity-type uranium deposits in the Alligator Rivers uranium field, northern Territory, Australia[J]. Economic Geology, 1989, 84(1): 64-90.
[70] Polito P A, Kyser T K, Alexandre P, et al. Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles[J]. Australian Journal of Earth Sciences, 2011, 58(5): 453-474.
[71] Clauer N, Mercadier J, Patrier P, et al. Relating unconformity-type uranium mineralization of the Alligator Rivers Uranium Field (northern Territory, Australia) to the regional Proterozoic tectono-thermal activity: An illite K–Ar dating approach[J]. Precambrian Research, 2015, 269: 107-121.
[72] Zhang Y Y, Zwingmann H, Liu K Y, et al. Hydrocarbon charge history of the Silurian bituminous sandstone reservoirs in the Tazhong uplift, Tarim Basin, China[J]. AAPG Bulletin, 2011, 95(3): 395-412.
[73] Timar-Geng Z, Grujic D, Rahn M. Deformation at the Leventina-Simano nappe boundary, Central Alps, Switzerland[J]. Eclogae Geologicae Helvetiae, 2004, 97(2):265-278.
[74] McCabe C, Van der Voo R, Peacor D R, et al. Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates[J]. Geology, 1983, 11(4): 221-223.
[75] Lu G, Marshak S, Kent D V. Characteristics of magnetic carriers responsible for Late Paleozoic remagnetization in carbonate strata of the mid-continent, U.S.A.[J]. Earth and Planetary Science Letters, 1990, 99(4): 351-361.
[76] Creer K M. Palaeozoic palaeomagnetism[J]. Nature, 1968, 219(5151): 246-250.
[77] Banerjee S, Elmore R D, Engel M H. Chemical remagnetization and burial diagenesis: Testing the hypothesis in the Pennsylvanian Belden Formation, Colorado[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B11): 24825-24842.
[78] Kean W F. Paleomagnetism of the Late Ordovician Neda iron ore from Wisconsin, Iowa and Illinois[J]. Geophysical Research Letters, 1981, 8(8): 880-882.
[79] Woods S D, Elmore R D, Engel M H. Paleomagnetic dating of the smectite‐to‐illite conversion: Testing the hypothesis in Jurassic sedimentary rocks, Skye, Scotland[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B5): EPM 2-1-EPM 2-10.