[1] 蒋融. 中国古岩溶环境与成因特征综述[J]. 石化技术,2017,24(5):113-114,104.

Jiang Rong. Review of China’s palaeokarst environment and its origination feature[J]. Petrochemical Industry Technology, 2017, 24(5): 113-114, 104.
[2] 文华国,罗连超,罗晓彤,等. 陆地热泉钙华研究进展与展望[J]. 沉积学报,2019,37(6):1162-1180.

Wen Huaguo, Luo Lianchao, Luo Xiaotong, et al. Advances and prospects of terrestrial thermal spring travertine research[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1162-1180.
[3] 汪智军,殷建军,袁道先. 钙华在第四纪研究中的应用:以青藏高原为例[J]. 科学通报,2018,63(11):1012-1023.

Wang Zhijun, Yin Jianjun, Yuan Daoxian. Possibilities and problems associated with travertines and tufas in Quaternary studies: A case of the Tibetan Plateau[J]. Chinese Science Bulletin, 2018, 63(11): 1012-1023.
[4] Selçuk A S, Erturaç M K, Üner S, et al. Evolution of Çamlık fissure-ridge travertines in the Başkale Basin (Van, eastern Anatolia)[J]. Geodinamica Acta, 2017, 29(1): 1-19.
[5] 牛新生,郑绵平,刘喜方,等. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报,2017,35(6):59-64.

Niu Xinsheng, Zheng Mianping, Liu Xifang, et al. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2017, 35(6): 59-64.
[6] 汪智军,殷建军,蒲俊兵,等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展,2019,34(6):606-617.

Wang Zhijun, Yin Jianjun, Pu Junbing, et al. Biological processes responsible for travertine deposition: A review and future prospect[J]. Advances in Earth Science, 2019, 34(6): 606-617.
[7] Drysdale R N, Taylor M P, Ihlenfeld C. Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia[J]. Hydrological Processes, 2002, 16(15): 2941-2962.
[8] Capezzuoli E, Gandin A, Pedley M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art[J]. Sedimentology, 2014, 61(1): 1-21.
[9] 李铁松. 白水台钙华区水化学特征及泉华沉积过程研究[J]. 西华师范大学学报(自然科学版),2005,26(4):350-353.

Li Tiesong. Sedimentary process and water chemistry property of contemporaneity sinter in Baishuitai[J]. Journal of China West Normal University (Natural Sciences), 2005, 26(4): 350-353.
[10] 赵元艺,崔玉斌,赵希涛. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报,2010,29(1):124-141.

Zhao Yuanyi, Cui Yubin, Zhao Xitao. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 2010, 29(1): 124-141.
[11] 郭卫星. 川西北自然风景中钙华景观的形成与发育[J]. 山地研究,1988,6(1):37-43.

Guo Weixing. The formation and development of travertine landscape in natural scenery of northwest Sichuan[J]. Mountain Research, 1988, 6(1): 37-43.
[12] 中国科学院青藏高原综合科学考察队. 西藏地热[M]. 北京:科学出版社,1981:39-43.

Comprehensive Scientific Investigation Team of Qinghai Tibet Plateau, Chinese Academy of Sciences. Tibetan geothermal[M]. Beijing: Science Press, 1981: 39-43.
[13] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报,2014,59(23):2229-2239.

Liu Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23): 2229-2239.
[14] Gradziński M, Bella P, Holúbek P. Constructional caves in freshwater limestone: A review of their origin, classification, significance and global occurrence[J]. Earth-Science Reviews, 2018, 185: 179-201.
[15] 牛永斌,钟建华,王培俊,等. 塔里木盆地西北缘奥陶系露头中的钙华特征及其石油地质意义[J]. 中国石油大学学报(自然科学版),2010,34(4):25-32.

Niu Yongbin, Zhong Jianhua, Wang Peijun, et al. Tufa character and its oil-gas significance of Ordovician outcrops in the northwest margin of Tarim Basin[J]. Journal of China University of Petroleum, 2010, 34(4): 25-32.
[16] Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3/4): 117-175.
[17] Pedley H M. Classification and environmental models of cool freshwater tufas[J]. Sedimentary Geology, 1990, 68(1/2): 143-154.
[18] Pentecost A. The Quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 1995, 14(10): 1005-1028.
[19] Vázquez-Urbez M, Arenas C, Sancho C, et al. Factors controlling present-day tufa dynamics in the Monasterio de Piedra Natural Park (Iberian Range, Spain): Depositional environmental settings, sedimentation rates and hydrochemistry[J]. International Journal of Earth Sciences, 2010, 99(5): 1027-1049.
[20] Porta G D, Capezzuoli E, De Bernardo A. Facies character and depositional architecture of hydrothermal travertine slope aprons (Pleistocene, Acquasanta Terme, Central Italy)[J]. Marine and Petroleum Geology, 2017, 87: 171-187.
[21] 陈鑫. 塔里木盆地奥陶系碳酸盐岩储集体井下和露头对比研究[D]. 青岛:中国石油大学(华东),2010.

Chen Xin. Underground and outcrops comparative research about the reservoir in carbonate rocks, Tarim Basin[D]. Qingdao: China University of Petroleum (East China), 2010.
[22] Pentecost A. Travertine[M]. Berlin: Springer, 2005.
[23] Chafetz H S, Folk R L. Travertines: Depositional morphology and the bacterially constructed constituents[J]. Journal of Sedimentary Research, 1984, 54(1): 289-316.
[24] Lee Ray K L, Bernhart Owen R, Renaut Robin W, et al. Facies, geochemistry and diatoms of Late Pleistocene Olorgesailie tufas, southern Kenya Rift[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 197-217.
[25] Das S, Mohanti M. Holocene microbial tufas: Orissa State, India[J]. Carbonates and Evaporites, 1997, 12(2): 204-219.
[26] Arenas C, Osácar C, Sancho C, et al. Seasonal record from recent fluvial tufa deposits (Monasterio de Piedra, NE Spain): Sedimentological and stable isotope data[J]. Geological Society, London, Special Publications, 2010, 336(1): 119-142.
[27] Ronchi P, Cruciani F. Continental carbonates as a hydrocarbon reservoir, an analog case study from the travertine of Saturnia, Italy[J]. AAPG Bulletin, 2015, 99(4): 711-734.
[28] 李华举,廖长君,姜殿强,等. 钙华沉积机制的研究现状及展望[J]. 中国岩溶,2006,25(1):57-62.

Li Huaju, Liao Changjun, Jiang Dianqiang, et al. The status quo and prospect of research on travertine precipitation mechanism[J]. Carsologica Sinica, 2006, 25(1): 57-62.
[29] 曹乐,聂振龙,刘学全,等. 巴丹吉林沙漠湖泊钙华的水化学成因[J]. 中国沙漠,2017,37(5):1026-1034.

Cao Le, Nie Zhenlong, Liu Xuequan, et al. Hydrochemical cause of lakes' tufa in Badain Jaran Desert[J]. Journal of Desert Research, 2017, 37(5): 1026-1034.
[30] Yeşilova Ç, Gülyüz E, Huang C R, et al. Giant tufas of Lake Van record lake-level fluctuations and climatic changes in eastern Anatolia, Turkey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533: 109226.
[31] Pellicer X M, Corella J P, Gutiérrez F, et al. Sedimentological and palaeohydrological characterization of Late Pleistocene and Holocene tufa mound palaeolakes using trenching methods in the Spanish Pyrenees[J]. Sedimentology, 2016, 63(6): 1786-1819.
[32] Toker E. Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: Facies and depositional systems[J]. Quaternary International, 2017, 437: 37-50.
[33] Nicoll K, Sallam E S. Paleospring tufa deposition in the Kurkur Oasis region and implications for tributary integration with the River Nile in southern Egypt[J]. Journal of African Earth Sciences, 2017, 136: 239-251.
[34] Wanas H A, Armenteros I. Microbially-induced fluvial tufa in Gunna hills, Farafra Oasis, Egypt: Facies analysis and stable isotopes[J]. Journal of African Earth Sciences, 2019, 158: 103515.
[35] Kawai T, Kano A, Hori M. Geochemical and hydrological controls on biannual lamination of tufa deposits[J]. Sedimentary Geology, 2009, 213(1/2): 41-50.
[36] Okumura T, Takashima C, Shiraishi F, et al. Processes forming daily lamination in a microbe-rich travertine under low flow condition at the Nagano-yu hot spring, southwestern Japan[J]. Geomicrobiology Journal, 2013, 30(10): 910-927.
[37] 王海静,巴明廷,丁晋利. 黄龙内生钙华沉积速率对气候的指示意义[J]. 资源与产业,2014,16(5):90-94.

Wang Haijing, Ba Mingting, Ding Jinli. Indication of Huanglong's endogenous travertine deposition rate to climate[J]. Resources & Industries, 2014, 16(5): 90-94.
[38] Gradziński M. Factors controlling growth of modern tufa: Results of a field experiment[J]. Geological Society, London, Special Publications, 2010, 336(1): 143-191.
[39] Pentecost A, Coletta P. The role of photosynthesis and CO2 evasion in travertine Formation: A quantitative investigation at an important travertine-depositing hot spring, Le Zitelle, Lazio, Italy[J]. Journal of the Geological Society, 2007, 164(4): 843-853.
[40] Nishikawa O, Furuhashi K, Masuyama, M, et al. Radiocarbon dating of residual organic matter in travertine formed along the Yumoto Fault in Oga Peninsula, northeast Japan: Implications for long-term hot spring activity under the influence of earthquakes[J]. Sedimentary Geology, 2012, 243-244: 181-190.
[41] 胥良,姜泽凡. 基于钙均衡估算黄龙钙华沉积速率的探讨[J]. 中国岩溶,2007,26(2):132-136.

Xu Liang, Jiang Zefan. Evaluation to the deposition rate of Huanglong travertine by calcium ion equilibrium[J]. Carsologica Sinica, 2007, 26(2): 132-136.
[42] Kawai T, Kano A, Matsuoka J, et al. Seasonal variation in water chemistry and depositional processes in a tufa-bearing stream in SW-Japan, based on 5 years of monthly observations[J]. Chemical Geology, 2006, 232(1/2): 33-53.
[43] 金之钧,朱东亚,胡文瑄,等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报,2006,80(2):245-253.

Jin Zhijun, Zhu Dongya, Hu Wenxuan, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-253.
[44] 朱东亚,孟庆强,胡文瑄,等. 塔里木盆地塔北和塔中地区流体作用环境差异性分析[J]. 地球化学,2013,42(1):82-94.

Zhu Dongya, Meng Qingqiang, Hu Wenxuan, et al. Differences between fluid activities in the central and north Tarim Basin[J]. Geochimica, 2013, 42(1): 82-94.
[45] 钟建华,苏飞飞,倪良田,等. 柯坪硫磺沟奥陶系(纹层状)古钙华的特征及石油地质意义[J]. 中国岩溶,2017,36(1):1-14.

Zhong Jianhua, Su Feifei, Ni Liangtian, et al. Palaeo-tufa from the Liuhuanggou cave 2 in the Ordovician carbonate, north Tarim Basin, China: Features and petroleum-geologic significances[J]. Carsologica Sinica, 2017, 36(1): 1-14.
[46] 张红敏,赵学钦,王富东,等. 四川九寨沟诺日朗瀑布钙华大坝放射性及沉积环境意义[J]. 中国岩溶,2021,40(1):157-165.

Zhang Hongmin, Zhao Xueqin, Wang Fudong, et al. Radioactivity of Nuorilang waterfall travertine dam in Jiuzhaigou valley, Sichuan province and its implication for the sedimentary environment[J]. Carsologica Sinica, 2021, 40(1): 157-165.
[47] 李华举. 钙华年层的形成及气候环境因素控制研究[D]. 桂林:广西师范大学,2006.

Li Huaju. Study on the formation of travertine annual laminae controled by climatic and environmental factors[D]. Guilin: Guangxi Normal University, 2006.
[48] Okumura T, Takashima C, Shiraishi F, et al. Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia[J]. Sedimentary Geology, 2012, 265-266: 195-209.
[49] 魏荣珠,韩颖,胥勤勉,等. 山西介休洪山钙华的空间分布特征、成因及时代探讨[J]. 中国岩溶:1-10[2021-09-09]. http://kns.cnki.net/kcms/detail/45.1157.p.20210224.1529.002.html. http://kns.cnki.net/kcms/detail/45.1157.p.20210224.1529.002.html

Wei Rongzhu, Han Ying, Xu Qinmian, et al. Study on the origin and distribution of spatial characteristics and age of travertine at Hongshan[J]. Carsologica Sinica:1-10[2021-09-09]. http://kns.cnki.net/kcms/detail/45.1157.p.20210224.1529.002.html. http://kns.cnki.net/kcms/detail/45.1157.p.20210224.1529.002.html
[50] 崔杰,代群威,王富东,等. 四川黄龙地区鲕状钙华包壳粒的发现及其特征[J]. 中国岩溶,2021,40(1):125-132.

Cui Jie, Dai Qunwei, Wang Fudong, et al. Discovery and feature of oolitic coated grains of travertine in the Huanglong area, Sichuan[J]. Carsologica Sinica, 2021, 40(1): 125-132.
[51] 付雷,张森琦,贾小丰,等. 万年尺度下钙华的古环境重建检验:以青海冰凌山为例[J]. 第四纪研究,2019,39(2):510-517.

Fu Lei, Zhang Senqi, Jia Xiaofeng, et al. Test of the paleoenvironment reconstruction of Bingling Hill travertine in large time scale Quaternary Sciences[J]. Quaternary Sciences, 2019, 39(2): 510-517.
[52] Goudie A S, Viles H A, Pentecost A. The Late-Holocene tufa decline in Europe[J]. The Holocene, 1993, 3(2): 181-186.
[53] Dabkowski J. High potential of calcareous tufas for integrative multidisciplinary studies and prospects for archaeology in Europe[J]. Journal of Archaeological Science, 2014, 52: 72-83.
[54] Preece R C, Day S P. Comparison of Post-glacial molluscan and vegetational successions from a radiocarbon-dated tufa sequence in Oxfordshire[J]. Journal of Biogeography, 1994, 21(5): 463-478.
[55] Preece R C, Bridgland D R. Holywell coombe, folkestone: A 13,000 year history of an English chalkland valley[J]. Quaternary Science Reviews, 1999, 18(8/9): 1075-1125.
[56] Meyrick R A, Preece R C. Molluscan successions from two Holocene tufas near Northampton, English Midlands[J]. Journal of Biogeography, 2001, 28(1): 77-93.
[57] Pedley M. Tufas and travertines of the Mediterranean region: A testing ground for freshwater carbonate concepts and developments[J]. Sedimentology, 2009, 56(1): 221-246.
[58] Luzón M A, Pérez A, Borrego A G, et al. Interrelated continental sedimentary environments in the central Iberian Range (Spain): Facies characterization and main palaeoenvironmental changes during the Holocene[J]. Sedimentary Geology, 2011, 239(1/2): 87-103.
[59] González-Amuchastegui M J, Serrano E. Tufa buildups, landscape evolution and human impact during the Holocene in the Upper Ebro Basin[J]. Quaternary International, 2015, 364: 54-64.
[60] Gradziński M, Hercman H, Jaśkiewicz M, et al. Holocene tufa in the Slovak Karst: Facies, sedimentary environments and depositional history[J]. Geological Quarterly, 2013, 57(4): 769-788.
[61] Carthew K D, Drysdale R N. Late Holocene fluvial change in a tufa-depositing stream: Davys creek, New South Wales, Australia[J]. Australian Geographer, 2003, 34(1): 123-139.
[62] Dreybrodt W. The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution[J]. The Journal of Geology, 1990, 98(5): 639-655.
[63] Bisse S B, Ekomane E, Eyong J T, et al. Sedimentological and geochemical study of the Bongongo and Ngol travertines located at the Cameroon Volcanic Line[J]. Journal of African Earth Sciences, 2018, 143: 201-214.
[64] Liu Z H, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates[J]. Geochimica et Cosmochimica Acta, 1995, 59(15): 3087-3097.
[65] Lopez B, Camoin G, Özkul M, et al. Sedimentology of coexisting travertine and tufa deposits in a mounded geothermal spring carbonate system, Obruktepe, Turkey[J]. Sedimentology, 2017, 64(4): 903-931.
[66] Arenas C, Osácar M C, Auqué L F, et al. Seasonal temperatures from δ18O in recent Spanish tufa stromatolites: Equilibrium redux![J]. Sedimentology, 2018, 65(5): 1611-1630.
[67] 黄浩,陈林,岳芯,等. 四川黑水卡龙沟钙华形成影响因素[J]. 四川地质学报,2017,37(4):639-642.

Huang Hao, Chen Lin, Yue Xin, et al. Influence factors of calc-sinter formation in the Kalong Valley, Heishui, Sichuan[J]. Acta Geologica Sichuan, 2017, 37(4): 639-642.
[68] 汪智军,殷建军,郝秀东,等. 基于微岩相分析的藻类在钙华沉积中的作用研究:以四川黄龙为例[J]. 中国岩溶,2021,40(1):44-54.

Wang Zhijun, Yin Jianjun, Hao Xiudong, et al. Role of algae in travertine deposition revealed by microscale observations: A case study of Huanglong, Sichuan, China[J]. Carsologica Sinica, 2021, 40(1): 44-54.
[69] Khalaf F I. Micromorphology and genesis of Quaternary stromatolitic tufa crust within the exposed Cretaceous Rayda Formation in Al-Jabal Al-Akhdar, Oman[J]. CATENA, 2020, 185: 104314.
[70] Freytet P, Plet A. Modern freshwater microbial carbonates: The Phormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France)[J]. Facies, 1996, 34(1): 219-237.
[71] Banat K M, Obeidat O M. Notes on biogenic tufas associated with the Zerqa-Ma’in hot springs of Jordan[J]. Carbonates and Evaporites, 1996, 11(2): 213-218.
[72] Gradziński M, Hercman H, Rizzi M, et al. Sedimentation of Holocene tufa influenced by the Neolithic man: An example from the Sąspowska Valley (southern Poland)[J]. Quaternary International, 2017, 437: 71-83.
[73] Delikan A, Mert M. Depositional and geochemical characteristics of geomorphologically controlled recent tufa deposits on the Göksü River in Yerköprü (Konya, southern Turkey)[J]. Carbonates and Evaporites, 2019, 34(2): 441-459.
[74] Török Á, Claes H, Brogi A, et al. A multi-methodological approach to reconstruct the configuration of a travertine fissure ridge system: The case of the Cukor quarry (Süttő, Gerecse Hills, Hungary)[J]. Geomorphology, 2019, 345: 106836.
[75] Ravazzolo D, Mao L, Escauriaza C, et al. Rusty river: Effects of tufa precipitation on sediment entrainment in the Estero Morales in the central Chilean Andes[J]. Science of the Total Environment, 2019, 652: 822-835.
[76] Vesper D J, Moore J E, Edenborn H M. Tufa deposition dynamics in a freshwater karstic stream influenced by warm springs[J]. Aquatic Geochemistry, 2019, 25(3/4): 109-135.
[77] Brogi A, Capezzuoli E. Earthquake impact on fissure-ridge type travertine deposition[J]. Geological Magazine, 2014, 151(6): 1135-1143.
[78] Uysal I T, Feng Y X, Zhao J X, et al. U-series dating and geochemical tracing of Late Quaternary travertine in co-seismic fissures[J]. Earth and Planetary Science Letters, 2007, 257(3/4): 450-462.
[79] Uysal I T, Feng Y X, Zhao J X, et al. Hydrothermal CO2 degassing in seismically active zones during the Late Quaternary[J]. Chemical Geology, 2009, 265(3/4): 442-454.
[80] De Filippis L, Faccenna C, Billi A, et al. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics[J]. Earth-Science Reviews, 2013, 123: 35-52.
[81] Ricketts J W, Ma L, Wagler A E, et al. Global travertine deposition modulated by oscillations in climate[J]. Journal of Quaternary Science, 2019, 34(7): 558-568.
[82] Brogi A, Capezzuoli E, Moretti M, et al. Earthquake-triggered soft-sediment deformation structures (seismites) in travertine deposits[J]. Tectonophysics, 2018, 745: 349-365.
[83] Mohammadi Z, Capezzuoli E, Claes H, et al. Substrate geology controlling different morphology, sedimentology, diagenesis and geochemistry of adjacent travertine bodies: A case study from the Sanandaj-Sirjan zone (western Iran)[J]. Sedimentary Geology, 2019, 389: 127-146.
[84] Zhong J H, Mao C, Li Y, et al. Discovery of the ancient Ordovician oil-bearing karst cave in Liuhuanggou, North Tarim Basin, and its significance[J]. Science China Earth Sciences, 2012, 55(9): 1406-1426.
[85] 毛毳,钟建华,王有智,等. 塔里木盆地巴楚隆起奥陶系岩溶缝洞化学充填物成因分析[J]. 中国石油大学学报(自然科学版),2018,42(6):50-58.

Mao Cui, Zhong Jianhua, Wang Youzhi, et al. Origin of chemical fillings in Ordovician fracture-cave of Bachu Uplift in Tarim Basin[J]. Journal of China University of Petroleum, 2018, 42(6): 50-58.
[86] Brogi A, Alçiçek M C, Yalçıner C Ç, et al. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)[J]. Tectonophysics, 2016, 680: 211-232.
[87] Brogi A, Liotta D, Capezzuoli E, et al. Travertine deposits constraining transfer zone neotectonics in geothermal areas: An example from the inner northern Apennines (Bagno Vignoni-Val d’Orcia area, Italy)[J]. Geothermics, 2020, 85: 101763.
[88] 胡向阳,权莲顺,齐得山,等. 塔河油田缝洞型碳酸盐岩油藏溶洞充填特征[J]. 特种油气藏,2014,21(1):18-21.

Hu Xiangyang, Quan Lianshun, Qi Deshan, et al. Features of cavern filling in fractured/vuggy carbonate oil reservoirs, Tahe oilfield[J]. Special Oil and Gas Reservoirs, 2014, 21(1): 18-21.
[89] 金强,康逊,田飞. 塔河油田奥陶系古岩溶径流带缝洞化学充填物成因和分布[J]. 石油学报,2015,36(7):791-798,836.

Jin Qiang, Kang Xun, Tian Fei. Genesis of chemical fillings in fracture-caves in paleo-karst runoff zone in Ordovician and their distributions in Tahe oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 791-798, 836.
[90] 张文博,金强,徐守余,等. 塔北奥陶系露头古溶洞充填特征及其油气储层意义[J]. 特种油气藏,2012,19(3):50-54,153.

Zhang Wenbo, Jin Qiang, Xu Shouyu, et al. Paleo⁃ cavern filling characteristics and hydrocarbon reservoir implication in the Ordovician outcrops in northern Tarim Basin[J]. Special Oil & Gas Reservoirs, 2012, 19(3): 50-54, 153.