[1] |
徐长贵,杜晓峰,徐伟,等. 沉积盆地“源—汇”系统研究新进展[J]. 石油与天然气地质,2017,38(1):1-11.
Xu Changgui, Du Xiaofeng, Xu Wei, et al. New advances of the “source-to-sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. |
[2] |
朱筱敏,董艳蕾,刘成林,等. 中国含油气盆地沉积研究主要科学问题与发展分析[J]. 地学前缘,2021,28(1):1-11.
Zhu Xiaomin, Dong Yanlei, Liu Chenglin, et al. Major challenges and development in Chinese sedimentological research on petroliferous basins[J]. Earth Science Frontiers, 2021, 28(1): 1-11. |
[3] |
杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.
Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921. |
[4] |
邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.
Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81. |
[5] |
杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5):902-910.
Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902-910. |
[6] |
石学法,乔淑卿,杨守业,等. 亚洲大陆边缘沉积学研究进展(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):319-336.
Shi Xuefa, Qiao Shuqing, Yang Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336. |
[7] |
林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20.
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. |
[8] |
朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870.
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. |
[9] |
操应长,徐琦松,王健. 沉积盆地“源—汇”系统研究进展[J]. 地学前缘,2018,25(4):116-131.
Cao Yingchang, Xu Qisong, Wang Jian. Progress in “source-to-sink” system research[J]. Earth Science Frontiers, 2018, 25(4): 116-131. |
[10] |
谈明轩,朱筱敏,张自力,等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118.
Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “source-to-sink” systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118. |
[11] |
Pettijohn F J. Classification of sandstones[J]. The Journal of Geology, 1954, 62(4): 360-365. |
[12] |
Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182. |
[13] |
Garzanti E. From static to dynamic provenance analysis—Sedimentary petrology upgraded[J]. Sedimentary Geology, 2016, 336: 3-13. |
[14] |
赵红格,刘池洋. 物源分析方法及研究进展[J]. 沉积学报,2003,21(3):409-415.
Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415. |
[15] |
王建刚,胡修棉. 砂岩副矿物的物源区分析新进展[J]. 地质论评,2008,54(5):670-678.
Wang Jiangang, Hu Xiumian. Applications of geochemistry and geochronology of accessory minerals in sandstone to provenance analysis[J]. Geological Review, 2008, 54(5): 670-678. |
[16] |
杨仁超,李进步,樊爱萍,等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报,2013,31(1):99-107.
Yang Renchao, Li Jinbu, Fan Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107. |
[17] |
刘腾,陈刚,徐小刚,等. 物源分析方法及其发展趋势[J]. 西北地质,2016,49(4):121-128.
Liu Teng, Chen Gang, Xu Xiaogang, et al. Methods and development trend of provenance analysis[J]. Northwestern Geology, 2016, 49(4): 121-128. |
[18] |
徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396.
Xu Jie, Jiang Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396. |
[19] |
王岳军,范蔚茗,林舸. 盆地沉积物示踪源区山脉隆升剥露的几种方法[J]. 地质科技情报,1999,18(2):85-89.
Wang Yuejun, Fan Weiming, Lin Ge. Several indicative methods of mountain uplift-erosion from basin sediments[J]. Geological Science and Technology Information, 1999, 18(2): 85-89. |
[20] |
闫义,林舸,王岳军,等. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展,2002,17(1):85-90.
Yan Yi, Lin Ge, Wang Yuejun, et al. The indication of continental detrital sediment to tectonic setting[J]. Advance in Earth Sciences, 2002, 17(1): 85-90. |
[21] |
闫义,林舸,李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学,2003,27(2):184-190.
Yan Yi, Lin Ge, Li Zi’an. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190. |
[22] |
Nie J S, Pullen A, Garzione C N, et al. Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates[J]. Science Advances, 2018, 4(2): eaao6977. |
[23] |
Yang J H, Cawood P A, Du Y S. Voluminous silicic eruptions during Late Permian Emeishan igneous province and link to climate cooling[J]. Earth and Planetary Science Letters, 2015, 432: 166-175. |
[24] |
Deng B, Chew D, Jiang L, et al. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte Basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time[J]. GSA Bulletin, 2018, 130(11/12): 2087-2109. |
[25] |
Zhao X D, Zhang H P, Hetzel R, et al. Existence of a continental-scale river system in eastern Tibet during the Late Cretaceous-Early Palaeogene[J]. Nature Communications, 2021, 12(1): 7231. |
[26] |
Morton A C. Heavy minerals in provenance studies[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 249-277. |
[27] |
McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Boulder, USA: Geological Society of America, 1993: 21-40. |
[28] |
Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. |
[29] |
Caracciolo L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth-Science Reviews, 2020, 209: 103226. |
[30] |
Molinaroli E, Basu A. Toward quantitative provenance analysis: A brief review and case study[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Boulder, USA: Geological Society of America, 1993: 323-333. |
[31] |
Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/2/3/4): 1-11. |
[32] |
Weltje G J. Quantitative models of sediment generation and provenance: State of the art and future developments[J]. Sedimentary Geology, 2012, 280: 4-20. |
[33] |
von Eynatten H, Dunkl I. Assessing the sediment factory: The role of single grain analysis[J]. Earth-Science Reviews, 2012, 115(1/2): 97-120. |
[34] |
Chew D, O’Sullivan G, Caracciolo L, et al. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth-Science Reviews, 2020, 202: 103093. |
[35] |
Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256. |
[36] |
Carroll D. Weatherability of zircon[J]. Journal of Sedimentary Research, 1953, 23(2): 106-116. |
[37] |
Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. |
[38] |
Ledent D, Patterson C, Tilton G R. Ages of zircon and feldspar concentrates from North American beach and river sands[J]. The Journal of Geology, 1964, 72(1): 112-122. |
[39] |
Tatsumoto M, Patterson C. Age studies of zircon and feldspar concentrates from the Franconia sandstone[J]. The Journal of Geology, 1964, 72(2): 232-242. |
[40] |
Drewery S, Cliff R A, Leeder M R. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons[J]. Nature, 1987, 325(6099): 50-53. |
[41] |
Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983. |
[42] |
Ireland T R. Crustal evolution of New Zealand: Evidence from age distributions of detrital zircons in western province paragneisses and Torlesse greywacke[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 911-920. |
[43] |
Sircombe K N. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia[J]. Sedimentary Geology, 1999, 124(1/2/3/4): 47-67. |
[44] |
Fernández-Suárez J, Gutiérrez-Alonso G, Jenner G A, et al. New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: Insights from U-Pb detrital zircon ages[J]. Precambrian Research, 2000, 102(3/4): 185-206. |
[45] |
Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations[J]. Earth and Planetary Science Letters, 1997, 152(1/2/3/4): 217-231. |
[46] |
兰中伍,陈岳龙,苏本勋,等. 四川松潘—甘孜盆地砂岩的物质来源:来自锆石U-Pb(SHRIMP)年龄证据[J]. 沉积学报,2006,24(3):321-332.
Lan Zhongwu, Chen Yuelong, Su Benxun, et al. The origin of sandstones from the Songpan-Ganze Basin, Sichuan, China: Evidence from SHRIMP U-Pb dating of clastic zircons[J]. Acta Sedimentologica Sinica, 2006, 24(3): 321-332. |
[47] |
王伟,李方林,鲍征宇. 松潘—甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约[J]. 地质科技情报,2007,26(5):35-44.
Wang Wei, Li Fanglin, Bao Zhengyu. U-Pb constraints on provenance and evolution of Middle to Late Triassic sediment in Songpan-Garze Basin[J]. Geological Science and Technology Information, 2007, 26(5): 35-44. |
[48] |
Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production[J]. GSA Bulletin, 2010, 122(11/12): 2041-2062. |
[49] |
Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks[J]. Geology, 2006, 34(2): 97-100. |
[50] |
Zhang K J, Li B, Wei Q G, et al. Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, eastern Tibetan Plateau): Implications for the tectonic amalgamation of China[J]. Sedimentary Geology, 2008, 208(1/2): 36-44. |
[51] |
Zhang K J, Li B, Wei Q G. Diversified provenance of the Songpan-Ganzi Triassic Turbidites, central China: Constraints from geochemistry and Nd isotopes[J]. The Journal of Geology, 2012, 120(1): 69-82. |
[52] |
Zhang Y X, Tang X C, Zhang K J, et al. U-Pb and Lu-Hf isotope systematics of detrital zircons from the Songpan-Ganzi Triassic flysch, NE Tibetan Plateau: Implications for provenance and crustal growth[J]. International Geology Review, 2014, 56(1): 29-56. |
[53] |
Zhang Y X, Zeng L, Li Z W, et al. Late Permian-Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau: Evidence from U-Pb ages, trace elements, and Hf isotopes of detrital zircons[J]. International Geology Review, 2015, 57(2): 159-181. |
[54] |
She Z B, Ma C Q, Mason R, et al. Provenance of the Triassic Songpan-Ganzi flysch, west China[J]. Chemical Geology, 2006, 231(1/2): 159-175. |
[55] |
刘祥,詹琼窑,朱弟成,等. 松潘—甘孜褶皱带南部上三叠统物源及构造抬升:碎屑锆石年代学和Hf同位素证据[J]. 岩石学报,2021,37(11):3513-3526.
Liu Xiang, Zhan Qiongyao, Zhu Dicheng, et al. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: Evidence from detrital zircon geochronology and Hf isotope[J]. Acta Petrologica Sinica, 2021, 37(11): 3513-3526. |
[56] |
Tang Y, Zhang Y P, Tong L L. Provenance of Middle to Late Triassic sedimentary rocks in the Zoige Depression in the NE part of the Songpan-Ganzi Flysch Basin: Petrography, heavy minerals, and zircon U-Pb geochronology[J]. Geological Journal, 2017, 52(Suppl.1): 449-462. |
[57] |
Ding L, Yang D, Cai F L, et al. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Tectonics, 2013, 32(1): 34-48. |
[58] |
Gong D X, Wu C H, Zou H, et al. Provenance analysis of Late Triassic turbidites in the eastern Songpan-Ganzi Flysch Complex: Sedimentary record of tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Marine and Petroleum Geology, 2021, 126: 104927. |
[59] |
Kong P, Zheng Y, Caffee M W. Provenance and time constraints on the formation of the first bend of the Yangtze River[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6): Q06017. |
[60] |
Yan Y, Carter A, Huang C Y, et al. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03001. |
[61] |
Chen Y, Yan M D, Fang X M, et al. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River[J]. Earth and Planetary Science Letters, 2017, 476: 22-33. |
[62] |
Zheng H B, Clift P D, He M Y, et al. Formation of the First Bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39. |
[63] |
Clift P D, Carter A, Wysocka A, et al. A Late Eocene-Oligocene through-flowing river between the upper Yangtze and South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(7): e2020GC009046. |
[64] |
Feng Y, Song C H, He P J, et al. Detrital zircon U-Pb geochronology of the Jianchuan Basin, southeastern Tibetan Plateau, and its implications for tectonic and paleodrainage evolution[J]. Terra Nova, 2021, 33(6): 560-572. |
[65] |
Wissink G K, Hoke G D, Garzione C N, et al. Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau: Insights from detrital zircon[J]. Tectonics, 2016, 35(11): 2538-2563. |
[66] |
Wei H H, Wang E, Wu G L, et al. No sedimentary records indicating southerly flow of the paleo-upper Yangtze River from the First Bend in southeastern Tibet[J]. Gondwana Research, 2016, 32: 93-104. |
[67] |
Zhao M, Shao L, Liang J S, et al. No red river capture since the Late Oligocene: Geochemical evidence from the northwestern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 185-194. |
[68] |
张信宝. 金沙江南流入红河的锆石U-Pb年龄谱物源示踪研究的质疑[J]. 山地学报,2019,37(4):471-474.
Zhang Xinbao. Question of using the zircon U-Pb age technique for sediment tracing to study whether the ancient Jinsha River flew southward to joint Red River[J]. Mountain Research, 2019, 37(4): 471-474. |
[69] |
Ludwig K R. Users manual for isoplot/Ex rev. 2.49: A geochronological toolkit for Microsoft excel[R]. Berkeley: Berkeley Geochronology Center, 2001. |
[70] |
Sircombe K, Neumann N. A review of methods for the statistical comparison of detrital zircon age distributions[C]// San Francisco, USA: American Geophysical Union, 2008: H53 C-1090. |
[71] |
张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展,2020,35(4):414-430.
Zhang Ling, Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430. |
[72] |
Cawood P A, Nemchin A A, Freeman M, et al. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies[J]. Earth and Planetary Science Letters, 2003, 210(1/2): 259-268. |
[73] |
He M Y, Zheng H B, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River Basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140. |
[74] |
Zhang J Y, Yin A, Liu W C, et al. Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers[J]. GSA Bulletin, 2012, 124(9/10): 1449-1473. |
[75] |
Andersen T, Kristoffersen M, Elburg M A. Visualizing, interpreting and comparing detrital zircon age and Hf isotope data in basin analysis-a graphical approach[J]. Basin Research, 2018, 30(1): 132-147. |
[76] |
Berry R F, Jenner G A, Meffre S, et al. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?[J]. Earth and Planetary Science Letters, 2001, 192(2): 207-222. |
[77] |
Gehrels G E, Yin A, Wang X F. Detrital-zircon geochronology of the northeastern Tibetan Plateau[J]. GSA Bulletin, 2003, 115(7): 881-896. |
[78] |
Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220. |
[79] |
Satkoski A M, Wilkinson B H, Hietpas J, et al. Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space[J]. GSA Bulletin, 2013, 125(11/12): 1783-1799. |
[80] |
Vermeesch P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146. |
[81] |
Vermeesch P. Dissimilarity measures in detrital geochronology[J]. Earth-Science Reviews, 2018, 178: 310-321. |
[82] |
Tye A R, Wolf A S, Niemi N A. Bayesian population correlation: A probabilistic approach to inferring and comparing population distributions for detrital zircon ages[J]. Chemical Geology, 2019, 518: 67-78. |
[83] |
Wissink G K, Wilkinson B H, Hoke G D. Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings[J]. Lithosphere, 2018, 10(3): 478-491. |
[84] |
Zhang H Z, Lu H Y, Zhou Y L, et al. Heavy mineral assemblages and U-Pb detrital zircon geochronology of sediments from the Weihe and Sanmen Basins: New insights into the Pliocene-Pleistocene evolution of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110072. |
[85] |
Huang X T, Song J Z, Yue W, et al. Detrital zircon U-Pb ages in the East China Seas: Implications for provenance analysis and sediment budgeting[J]. Minerals, 2020, 10(5): 398. |
[86] |
Wang C, Wen S N, Liang X Q, et al. Detrital zircon provenance record of the Oligocene Zhuhai Formation in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 448-461. |
[87] |
Zhang H B, Nie J S, Liu X J, et al. Spatially variable provenance of the Chinese Loess Plateau[J]. Geology, 2021, 49(10): 1155-1159. |
[88] |
Amidon W H, Burbank D W, Gehrels G E. Construction of detrital mineral populations: Insights from mixing of U-Pb zircon ages in Himalayan rivers[J]. Basin Research, 2005, 17(4): 463-485. |
[89] |
Amidon W H, Burbank D W, Gehrels G E. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 244-260. |
[90] |
Malkowski M A, Sharman G R, Johnstone S A, et al. Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.)[J]. American Journal of Science, 2019, 319(10): 846-902. |
[91] |
Lavarini C, Attal M, da Costa Filho C A, et al. Does pebble abrasion influence detrital age population statistics? A numerical investigation of natural data sets[J]. Journal of Geophysical Research, 2018, 123(10): 2577-2601. |
[92] |
Saylor J E, Sundell K E, Sharman G R. Characterizing sediment sources by non-negative matrix factorization of detrital geochronological data[J]. Earth and Planetary Science Letters, 2019, 512: 46-58. |
[93] |
Sundell K E, Saylor J E. Unmixing detrital geochronology age distributions[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2872-2886. |
[94] |
Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns[J]. Journal of Geophysical Research, 2016, 121(11): 2085-2099. |
[95] |
Wang L, MacLennan S A, Cheng F. From a proximal-deposition-dominated basin sink to a significant sediment source to the Chinese Loess Plateau: Insight from the quantitative provenance analysis on the Cenozoic sediments in the Qaidam Basin, northern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109883. |
[96] |
Shang Y, Nian X M, Zhang W G, et al. Yellow river’s contribution to the building of Yangtze delta during the last 500 years - evidence from detrital zircon U-Pb geochronology[J]. Geophysical Research Letters, 2021, 48(14): e2020GL091896. |
[97] |
Hietpas J, Samson S, Moecher D, et al. Enhancing tectonic and provenance information from detrital zircon studies: Assessing terrane-scale sampling and grain-scale characterization[J]. Journal of the Geological Society, 2011, 168(2): 309-318. |
[98] |
Malusà M G, Resentini A, Garzanti E. Hydraulic sorting and mineral fertility bias in detrital geochronology[J]. Gondwana Research, 2016, 31: 1-19. |
[99] |
Capaldi T N, Horton B K, McKenzie N R, et al. Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina[J]. Earth and Planetary Science Letters, 2017, 479: 83-97. |
[100] |
Komar P D, Reimers C E. Grain shape effects on settling rates[J]. The Journal of Geology, 1978, 86(2): 193-209. |
[101] |
Garzanti E, Andò S, Vezzoli G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 138-151. |
[102] |
Cantine M D, Setera J B, Vantongeren J A, et al. Grain size and transport biases in an Ediacaran detrital zircon record[J]. Journal of Sedimentary Research, 2021, 91(9): 913-928. |
[103] |
Garzanti E, Andò S, Vezzoli G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 422-432. |
[104] |
Resentini A, Malusà M G, Garzanti E. MinSORTING: An excel® worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies[J]. Computers & Geosciences, 2013, 59: 90-97. |
[105] |
许苗苗,魏晓椿,杨蓉,等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展,2021,36(2):154-171.
Xu Miaomiao, Wei Xiaochun, Yang Rong, et al. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 2021, 36(2): 154-171. |
[106] |
Lawrence R L, Cox R, Mapes R W, et al. Hydrodynamic fractionation of zircon age populations[J]. GSA Bulletin, 2011, 123(1/2): 295-305. |
[107] |
Ibañez-Mejia M, Pullen A, Pepper M, et al. Use and abuse of detrital zircon U-Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela[J]. Geology, 2018, 46(11): 1019-1022. |
[108] |
Zimmermann U, Andersen T, Madland M V, et al. The role of U-Pb ages of detrital zircons in sedimentology: An alarming case study for the impact of sampling for provenance interpretation[J]. Sedimentary Geology, 2015, 320: 38-50. |
[109] |
Muhlbauer J G, Fedo C M, Farmer G L. Influence of textural parameters on detrital-zircon age spectra with application to provenance and paleogeography during the Ediacaran-Terreneuvian of southwestern Laurentia[J]. GSA Bulletin, 2017, 129(11/12): 1585-1601. |
[110] |
Sláma J, Košler J. Effects of sampling and mineral separation on accuracy of detrital zircon studies[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05007. |
[111] |
Dröllner M, Barham M, Kirkland C L, et al. Every zircon deserves a date: Selection bias in detrital geochronology[J]. Geological Magazine, 2021, 158(6): 1135-1142. |
[112] |
Malusà M G, Carter A, Limoncelli M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90-107. |
[113] |
Yang S Y, Zhang F, Wang Z B. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296-297: 26-38. |
[114] |
Augustsson C, Voigt T, Bernhart K, et al. Zircon size-age sorting and source-area effect: The German Triassic Buntsandstein Group[J]. Sedimentary Geology, 2018, 375: 218-231. |
[115] |
Markwitz V, Kirkland C L, Mehnert A, et al. 3-D characterization of detrital zircon grains and its implications for fluvial transport, mixing, and preservation bias[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4655-4673. |
[116] |
Leary R J, Smith M E, Umhoefer P. Grain-size control on detrital zircon cycloprovenance in the Late Paleozoic paradox and eagle basins, USA[J]. Journal of Geophysical Research, 2020, 125(7): e2019JB019226. |
[117] |
Gärtner A, Hofmann M, Zieger J, et al. Implications for sedimentary transport processes in southwestern Africa: A combined zircon morphology and age study including extensive geochronology databases[J]. International Journal of Earth Sciences, 2022, 111(3): 767-788. |
[118] |
Gärtner A, Linnemann U, Sagawe A, et al. Morphology of zircon crystal grains in sediments - characteristics, classifications, definitionsl: Morphologie von Zirkonen in Sedimenten-Merkmale, Klassifikationen, Definitionen[J]. Journal of Central European Geology, 2013, 59: 65-73. |
[119] |
宋鹰,钱禛钰,张俊霞,等. 碎屑锆石形态学分类体系及其在物源分析中的应用:以松辽盆地松科一井为例[J]. 地球科学,2018,43(6):1997-2006.
Song Ying, Qian Zhenyu, Zhang Junxia, et al. Morphology of detrital zircon and its application in provenance analysis: Example from Cretaceous continental scientific drilling borehole in Songliao Basin[J]. Earth Science, 2018, 43(6): 1997-2006. |
[120] |
胡修棉. 物源分析的一个误区:砂粒在河流搬运过程中的变化[J]. 古地理学报,2017,19(1):175-184.
Hu Xiumian. A misunderstanding in provenance analysis: Sand changes of mineral, roundness, and size in flowing-water transportation[J]. Journal of Palaeogeography, 2017, 19(1): 175-184. |
[121] |
Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 252-266. |
[122] |
Dickinson W R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 80-92. |
[123] |
Mapes R W. Past and present provenance of the Amazon River[D]. Chapel Hill: The University of North Carolina at Chapel Hill, 2009. |
[124] |
Spencer C J, Kirkland C L, Roberts N M W. Implications of erosion and bedrock composition on zircon fertility: Examples from South America and western Australia[J]. Terra Nova, 2018, 30(4): 289-295. |
[125] |
Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082. |
[126] |
徐杰. 物源分析中再旋回锆石的几点思考[EB/OL]. 沉积之声,2021(2021-12-29). https://mp.weixin.qq.com/s/VIpaZCphuJDkb6kkXhcuIw.
Xu Jie. Some thoughts on recycling zircons in provenance analyses[EB/OL]. Sound of Sedimentologists, 2021(2021-12-29). https://mp.weixin.qq.com/s/VIpaZCphuJDkb6kkXhcuIw. |
[127] |
Campbell I H, Reiners P W, Allen C M, et al. He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 402-432. |
[128] |
Andersen T, Kristoffersen M, Elburg M A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study[J]. Gondwana Research, 2016, 34: 129-148. |
[129] |
Andersen T, Elburg M, Cawthorn-Blazeby A. U-Pb and Lu-Hf zircon data in young sediments reflect sedimentary recycling in eastern South Africa[J]. Journal of the Geological Society, 2016, 173(2): 337-351. |
[130] |
Dickinson W R, Lawton T F, Gehrels G E. Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona[J]. Geology, 2009, 37(6): 503-506. |
[131] |
Xu J, Stockli D F, Snedden J W. Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from Lower Miocene strata, proximal Gulf of Mexico Basin, North America[J]. Earth and Planetary Science Letters, 2017, 475: 44-57. |
[132] |
Moecher D P, Kelly E A, Hietpas J, et al. Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis[J]. GSA Bulletin, 2019, 131(7/8): 1115-1132. |
[133] |
Barham M, Kirkland C L, Hovikoski J, et al. Reduce or recycle? Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting[J]. Sedimentology, 2021, 68(2): 531-556. |
[134] |
Kondolf G M. PROFILE: Hungry water: Effects of dams and gravel mining on river channels[J]. Environmental Management, 1997, 21(4): 533-551. |
[135] |
Thomson K D, Stockli D F, Fildani A. Anthropogenic impact on sediment transfer in the Upper Missouri River catchment detected by detrital zircon analysis[J]. GSA Bulletin, 2022, doi: 10.1130/B36217.1 . |
[136] |
Wissink G K, Hoke G D. Eastern margin of Tibet supplies most sediment to the Yangtze River[J]. Lithosphere, 2016, 8(6): 601-614. |
[137] |
Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451. |
[138] |
Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3/4): 249-270. |
[139] |
Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980. |
[140] |
吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604.
Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. |
[141] |
李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究,2009,32(3):161-174.
Li Changmin. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 2009, 32(3): 161-174. |
[142] |
张永清,王国明,许雅雯,等. 锆石微区原位U-Pb定年的测定位置选择方法[J]. 地质调查与研究,2015,38(3):233-238.
Zhang Yongqing, Wang Guoming, Xu Yawen, et al. Methods for choosing target points in-situ zircon U-Pb dating[J]. Geological Survey and Research, 2015, 38(3): 233-238. |
[143] |
Bonich M B, Samson S D, Fedo C M. Incongruity of detrital zircon ages of granitic bedrock and its derived alluvium: An example from the stepladder mountains, southeastern California[J]. The Journal of Geology, 2017, 125(3): 337-350. |
[144] |
Zimmermann S, Mark C, Chew D, et al. Maximising data and precision from detrital zircon U-Pb analysis by LA-ICPMS: The use of core-rim ages and the single-analysis concordia age[J]. Sedimentary Geology, 2018, 375: 5-13. |
[145] |
Liu L, Stockli D F, Lawton T F, et al. Reconstructing source-to-sink systems from detrital zircon core and rim ages[J]. Geology, 2022, 50(6): 691-696. |
[146] |
Schoene B. 4.10-U-Th-Pb Geochronology[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 341-378. |
[147] |
Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. Hoboken: Wiley, 2011: 45-62. |
[148] |
Andersen T, Elburg M A, Magwaza B N. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction[J]. Earth-Science Reviews, 2019, 197: 102899. |
[149] |
Vermeesch P. On the treatment of discordant detrital zircon U-Pb data[J]. Geochronology, 2021, 3(1): 247-257. |
[150] |
杨蓉, Diane S,周祖翼. 长江流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质,2010,30(6):73-83.
Yang Rong, Diane S, Zhou Zuyi. Provenance study by U-Pb dating of the detrital zorcons in the Yangtze River[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 73-83. |
[151] |
Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2660-2673. |
[152] |
郭亮,张宏飞,徐旺春,等. 黄河源头区碎屑锆石U-Pb年龄及其地质意义[J]. 自然科学进展,2008,18(12):1398-1408.
Guo Liang, Zhang Hongfei, Xu Wangchun, et al. U-Pb ages of detrital zircons in the Yellow River’s source area and their geological significance[J]. Progress in Natural Science, 2008, 18(12): 1398-1408. |
[153] |
岳保静,廖晶. 黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质,2016,36(5):109-119.
Yue Baojing, Liao Jing. Provenance study of Yellow River sediments by U-Pb dating of the detrital zircons[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 109-119. |
[154] |
郑萍,李大鹏,陈岳龙,等. 黄河口河流沙碎屑沉积物锆石U-Pb年龄及地质意义[J]. 现代地质,2013,27(1):79-90.
Zheng Ping, Li Dapeng, Chen Yuelong, et al. Zircon U-Pb ages of clastic sediment from the outfall of the Yellow River and their geological significance[J]. Geoscience, 2013, 27(1): 79-90. |
[155] |
He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361: 186-203. |
[156] |
Deng K, Yang S Y, Li C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164: 31-47. |
[157] |
Chew D, Drost K, Petrus J A. Ultrafast, > 50 Hz LA-ICP-MS Spot Analysis Applied to U-Pb dating of zircon and other U-bearing minerals[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 39-60. |
[158] |
Vermeesch P, Rittner M, Petrou E, et al. High Throughput petrochronology and sedimentary provenance analysis by automated phase mapping and LAICPMS[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 4096-4109. |