[1] Pettijohn F J. Sedimentary rocks[M]. New York: Harper & Row, 1975: 1-2.
[2] 孙枢. 中国沉积学的今后发展:若干思考与建议[J]. 地学前缘,2005,12(2):3-10.

Sun Shu. Sedimentology in China: Perspectives and suggestions[J]. Earth Science Frontiers, 2005, 12(2): 3-10.
[3] 孙龙德,方朝亮,李峰,等. 中国沉积盆地油气勘探开发实践与沉积学研究进展[J]. 石油勘探与开发,2010,37(4):385-396.

Sun Longde, Fang Chaoliang, Li Feng, et al. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum exploration and Development, 2010, 37(4): 385-396.
[4] 孙龙德,方朝亮,李峰,等. 油气勘探开发中的沉积学创新与挑战[J]. 石油勘探与开发,2015,42(2):129-136.

Sun Longde, Fang Chaoliang, Li Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum exploration and Development, 2015, 42(2): 129-136.
[5] 朱如凯,邹才能,袁选俊,等. 中国能源沉积学研究进展与发展战略思考[J]. 沉积学报,2017,35(5):1004-1015.

Zhu Rukai, Zou Caineng, Yuan Xuanjun, et al. Research progress and development strategic thinking on energy sedimentology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1004-1015.
[6] 王成善,林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报,2021,40(6):1217-1229.

Wang Chengshan, Lin Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1217-1229.
[7] 邹才能,邱振. 中国非常规油气沉积学新进展:“非常规油气沉积学”专辑前言[J]. 沉积学报,2021,39(1):1-9.

Zou Caineng, Qiu Zhen. Preface: New advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 1-9.
[8] 朱筱敏,董艳蕾,刘成林,等. 中国含油气盆地沉积研究主要科学问题与发展分析[J]. 地学前缘,2021,28(1):1-11.

Zhu Xiaomin, Dong Yanlei, Liu Chenglin, et al. Major challenges and development in Chinese sedimentological research on petroliferous basins[J]. Earth Science Frontiers, 2021, 28(1): 1-11.
[9] Sorby H C. On the origin of the Cleveland hill ironstone[J]. Proceedings of the Yorkshire Geological Society‚1849‚3(1): 457-461.
[10] Gilbert G K. An introduction to physical geography[M]. New York: D Appleton and Company, 1906.
[11] Hatch F H, Rastall R H. The petrology of the sedimentary rocks[M]. London: George Allen & Unwin Ltd, 1913.
[12] Udden J A. The mechanical composition of wind deposits[M]. Augustana: Library Publication, 1898: 69.
[13] Illing V C. The oilfields of Trinidad[J]. Proceedings of the Geologists’ Association, 1916, 27: 115.
[14] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology‚1922, 30(5): 377-392.
[15] Wadell H. Volume, shape, and roundness of rock particles[J]. The Journal of Geology, 1932, 40(5): 443-451.
[16] Pan C H. Non-marine origin of petroleum in North Shensi and the Cretaceous of Szechuan China[J]. AAPG Bulletin, 1941, 25(11): 2058-2068.
[17] Folk R L. Practical petrographic classification of limestones[J]. AAPG Bulletin‚1959, 43(1): 1-38.
[18] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168.
[19] Vail P R, Mitchum R M, Thompson III S. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level[M]//Payton C E. Seismic stratigraphy: Applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977: 83-98.
[20] Schieber J. Developing a sequence stratigraphic framework for the Late Devonian Chattanooga shale of the southeastern U.S.: relevance for the Bakken shale[J]. AAPG Bulletin, 1998, 13(1): 58-68.
[21] 吴靖,姜在兴,吴明昊. 细粒岩层序地层学研究方法综述[J]. 地质科技情报,2015,34(5):16-20.

Wu Jing, Jiang Zaixing, Wu Minghao, et al. Summary of research methods about the sequence stratigraphy of the fine-grained rocks[J]. Geological Science and Technology Information, 2015, 34(5): 16-20.
[22] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale: Study guide and reference source[M]. New York: Springer, 1980.
[23] 包洪平,杨承运 .碳酸盐岩微相分析及其在岩相古地理研究中的意义[J].岩相古地理,1999,19(6):59-64.

Bao Hongping, Yang Chengyun. Carbonate microfacies analysis and its significance in lithofacies palaeogeography study[J]. Sedimentary Facies and Palaeogeography,1999,19(6): 59-64.
[24] Udden J A, Waite V V. Some microscopic characteristics of the Bend and Ellenburger limestones[J]. Texas University Bulletin, 1927, 27: 8.
[25] Wilson J L. Carbonate facies in geologic history[M]. Berlin: Springer, 1975: 1-471.
[26] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology‚2000, 47(Suppl. 1): 179-214.
[27] 业治铮,孟祥化,何起祥. 石灰岩的结构—成因分类[J]. 地质论评,1964,22(5):378-389.

Ye Zhizheng, Meng Xianghua, He Qixiang. The genetic textual classifications of limestones [J]. Geological Review, 1964, 22(5): 378-389.
[28] 冯增昭. 碳酸盐岩分类[J]. 石油学报,1982,3(1):11-18.

Feng Zengzhao. Classification of carbonate rocks[J]. Acta Petrolei Sinica, 1982, 3(1): 11-18.
[29] 曾允孚,夏文杰. 沉积岩石学[M]. 北京:地质出版社,1986.

Zeng Yunfu, Xia Wenjie. Sedimentary petrology [M]. Beijing: Geological Publishing House, 1986.
[30] 陈安清,侯明才,陈洪德,等. 中国海相碳酸盐岩勘探领域拓展历程及沉积学的基本驱动作用[J]. 沉积学报,2017,35(5):1054-1062.

Chen Anqing, Hou Mingcai, Chen Hongde, et al. Marine carbonate exploration history and the basic driving action from sedimentology in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1054-1062.
[31] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347-355.

Lu Xinbian, Hu Wenge, Wang Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[32] 赵文智,沈安江,乔占峰,等. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现[J]. 中国石油勘探,2022,27(4):1-15.

Zhao Wenzhi, Shen Anjiang, Qiao Zhanfeng, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China[J]. China Petroleum Exploration, 2022, 27(4): 1-15.
[33] Forel F A .Le ravin sous—lacustre de Rhone dans le lac Leman[J]. Bulletin de la Societe Vaudoise Science Naturelle, 1887, 23: 85-107.
[34] Johnson D. The origin of submarine canyons[M]. USA: Columbia University Press, 1939.
[35] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
[36] Normark W R. Growth patterns of deep sea fans[J]. American Association of Petroleum Geologists Bulletin,1970, 54: 2170-2195.
[37] Mutti E, Ricci L F. Turbidites of the Norther Apennines: introduction to facies analysis[J]. International Geology Review, 1972, 20: 125-166.
[38] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966.
[39] Vail P R. Seismic stratigraphy interpretation procedures[M]//Bally A W. Atlas of seismic stratigraphy. Tulsa: AAPG, 1987: 1-10.
[40] Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822.
[41] Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
[42] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits: A synthesis[J]. Geology, 2014, 42(11): 987-990.
[43] Pierce C S, Haughton P D W, Shannon P M, et al. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland[J]. Sedimentology, 2018, 65(3): 952-992.
[44] Hamilton P, Gaillot G, Strom K, et al. Linking hydraulic properties in supercritical submarine distributary channels to depositional-lobe geometry[J]. Journal of Sedimentary Research, 2017, 87(9): 935-950.
[45] Wilckens H, Eggenhuisen J T, Adema P H, et al. Secondary flow in contour currents controls the formation of moat-drift contourite systems[J]. Communications Earth & Environment, 2023, 4(1): 316.
[46] Talling P J, Cartigny M J B, Pope E, et al. Detailed monitoring reveals the nature of submarine turbidity currents[J]. Nature Reviews Earth & Environment, 2023, 4(9): 642-658.
[47] Yang R C, Jin Z J, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[48] Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287.
[49] Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
[50] Lang J, Brandes C, Winsemann J. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)[J]. Sedimentary Geology, 2017, 349: 79-102.
[51] Paola C, Martin J M. Mass-balance effects in depositional systems[J]. Journal of Sedimentary Research, 2012, 82(6): 435-450.
[52] Allen P A, Armitage J J, Carter A, et al. The Qs problem: Sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130.
[53] Bhattacharya J P, Copeland P, Lawton T F, et al. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential[J]. Earth-Science Reviews, 2016, 153: 77-110.
[54] Brewer C J, Hampson G J, Whittaker A C, et al. Comparison of methods to estimate sediment flux in ancient sediment routing systems[J]. Earth-Science Reviews, 2020, 207: 103217.
[55] 万力,黄秀,张志杰,等. 碎屑岩系不同沉积体系的沉积正演方法综述[J]. 地质科技通报,2023,42(3):153-162.

Wan Li, Huang Xiu, Zhang Zhijie, et al. A review of sedimentary forward modeling methods for different sedimentary systems of clastic rock series[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 153-162.
[56] 张志杰,周川闽,袁选俊,等. 准噶尔盆地二叠系源—汇系统与古地理重建[J]. 地质学报,2023,97(9):3006-3023.

Zhang Zhijie, Zhou Chuanmin, Yuan Xuanjun, et al. Source-to-sink system and palaeogeographic reconstruction of Permian in the Junggar Basin, northwestern China[J]. Acta Geologica Sinica, 2023, 97(9): 3006-3023.
[57] 张功成,屈红军,张凤廉,等. 全球深水油气重大新发现及启示[J]. 石油学报,2019,40(1):1-34,55.

Zhang Gongcheng, Qu Hongjun, Zhang Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J]. Acta Petrolei Sinica, 2019, 40(1): 1-34, 55.
[58] 赵文智,胡素云,郭绪杰,等. 油气勘探新理念及其在准噶尔盆地的实践成效[J]. 石油勘探与开发,2019,46(5):811-819.

Zhao Wenzhi, Hu Suyun, Guo Xujie, et al. New concepts for deepening hydrocarbon exploration and their application effects in the Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(5): 811-819.
[59] Gorsline D S. Introduction to a symposium on fine-grained sedimentology[J]. Geo-Marine Letters, 1984, 4(3): 133-138.
[60] Schieber J, Zimmerle W, Sethi P. Shales and mudstones: Vol. 1: Basin studies, sedimentology and paleontology[M]. Stuttgart: Schweizerbart Science Publishers, 1998.
[61] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[62] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
[63] 谢家荣. 石油[M]. 上海:商务印书馆,1930:127.

Xie Jiarong. Petroleum[M]. Shanghai: The Commercial Press, 1930: 127.
[64] Bates T F, Sand L B, Mink J F. Tubular crystals of chrysotile asbestos[J]. Science, 1950, 111(2889): 512-513.
[65] Millot G. Geologie Des Argiles[M]. Masson, Paris.1964.
[66] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
[67] Dimberline A J, Bell A, Woodcock N H. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin[J]. Journal of the Geological Society, 1990, 147: 693-701.
[68] Wignall P B. Black shales[M]. Oxford: Oxford University Press, 1994: 1-3.
[69] 朱如凯,李梦莹,杨静儒,等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质,2022,43(2):251-264.

Zhu Rukai, Li Mengying, Yang Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264.
[70] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[71] Macquaker J H S, Keller M A, Davies S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942.
[72] Ghadeer S G, Macquaker J H S. The role of event beds in the preservation of organic carbon in fine-grained sediments: Analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England[J]. Marine and Petroleum Geology, 2012, 35(1): 309-320.
[73] Smith L B, Schieber J, Wilson R D. Shallow-water onlap model for the deposition of Devonian black shales in New York, USA[J]. Geology, 2019, 47: 279-283.
[74] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
[75] Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987.
[76] Baker M L, Baas J H. Mixed sand–mud bedforms produced by transient turbulent flows in the fringe of submarine fans: Indicators of flow transformation[J]. Sedimentology, 2020, 67(5): 2645-2671.
[77] 杨仁超,李作福,张学才,等. 异重流沉积研究进展与展望[J]. 沉积学报,2023,41(6):1917-1933.

Yang Renchao, Li Zuofu, Zhang Xuecai, et al. Advances and perspectives in the study of hyperpycnal flow deposition[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1917-1933.
[78] Wang C S, Feng Z Q, Zhang L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
[79] 张天舒,朱如凯,蔡毅,等. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质,2023,44(4):869-886.

Zhang Tianshu, Zhu Rukai, Cai Yi, et al. Distribution of organic matter in the Qingshankou Formation shale, Gulong Sag, Songliao Basin observed within an isochronous sequence stratigraphic framework[J]. Oil & Gas Geology, 2023, 44(4): 869-886.
[80] 邹才能,冯有良,杨智,等. 中国湖盆细粒重力流沉积作用及其对页岩油“甜点段”发育的影响[J]. 石油勘探与开发,2023,50(5):883-897.

Zou Caineng, Feng Youliang, Yang Zhi, et al. Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet spot intervals in lacustrine basins in China[J]. Petroleum Exploration and Development, 2023, 50(5): 883-897.
[81] 徐长贵. 陆相断陷盆地源—汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J]. 中国海上油气,2013,25(4):1-11,21.

Xu Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: Basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11, 21.
[82] 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252.

Gong Chenglin, Qi Kun, Xu Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252.
[83] 大庆油气区编纂委员会. 中国石油地质志-卷二-大庆油气区[M]. 2版. 北京:石油工业出版社,2023:2.

Editorial Committee of Daqing oil and Gas Zone. Petroleum geology of China Daqing oil and gas zone[M]. 2nd ed. Beijing: Petroleum Industry Press, 2023: 2.
[84] 柳波,蒙启安,付晓飞,等. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质,2024,45(2):406-419.

Liu Bo, Meng Qi’an, Fu Xiaofei, et al. Composition of generated and expelled hydrocarbons and phase evolution of shale oil in the 1st member of Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2024, 45(2): 406-419.
[85] Liu B, Wang H L, Fu X F, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432.
[86] 柳波,孙嘉慧,张永清,等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发,2021,48(3):521-535.

Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Pe-troleum Exploration and Development, 2021, 48(3): 521-535.
[87] 王安,胡明毅,高家俊,等. 松南长岭凹陷青山口组一段泥页岩元素地球化学特征及古环境意义[J]. 吉林大学学报(地球科学版),2024,54(6):2075-2088.

Wang An, Hu Mingyi, Gao Jiajun, et al. Element geochemical characteristics and paleoenvironmental significance of mud shale in the First member of Qingshankou Formation of Changling Depression in southern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2024,54(6):2075-2088.
[88] 孙龙德,刘合,何文渊,等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发,2021,48(3):453-463.

Sun Longde, Liu He, He Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing oilfield, NE China[J]. Petroleum Exploration and Development, 2024, 54(6): 2075-2088.
[89] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[90] Chen Z H, Jiang C Q. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data: Example from Duvernay Formation in the western Canada Sedimentary Basin[J]. AAPG Bulletin, 2016, 100(3): 405-422.
[91] 沈安江,罗宪婴,胡安平,等. 从准同生到埋藏环境的白云石化路径及其成储效应[J]. 石油勘探与开发,2022,49(4):637-647.

Shen Anjiang, Luo Xianying, Hu Anping, et al. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment[J]. Petroleum Exploration and Development, 2022, 49(4): 637-647.
[92] 赵文智,沈安江,潘文庆,等. 碳酸盐岩岩溶储层类型研究及对勘探的指导意义:以塔里木盆地岩溶储层为例[J]. 岩石学报,2013,29(9):3213-3222.

Zhao Wenzhi, Shen Anjiang, Pan Wenqing, et al. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration: Cases studies from Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(9): 3213-3222.
[93] Jin Z J, Wang X M, Wang H J, et al. Organic carbon cycling and black shale deposition: An Earth system science perspective[J]. National Science Review, 2023, 10(11): nwad243.
[94] Zhang R, Jin Z J, Li M S, et al. Long-term periodicity of sedimentary basins in response to astronomical forcing: Review and perspective[J]. Earth-Science Reviews, 2023, 244: 104533.
[95] Wei R, Jin Z J, Zhang R, et al. Orbitally-paced coastal sedimentary records and global sea-level changes in the Early Permian[J]. Earth and Planetary Science Letters, 2023, 620: 118356.