[1] |
邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12.
Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. |
[2] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[3] |
王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质,2014,35(3):425-430.
Wang Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J]. Oil & Gas Geology, 2014, 35(3): 425-430. |
[4] |
邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796.
Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. |
[5] |
Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191. |
[6] |
何庆,高键,董田,等. 鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J]. 沉积学报,2021,39(3):686-703.
He Qing, Gao Jian, Dong Tian, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei province[J]. Acta Sedimentologica Sinica, 2021, 39(3): 686-703. |
[7] |
刘建清,何利,何平,等. 康滇古陆东缘筇竹寺组地球化学特征及意义:以云南省昭通市昭阳区锌厂沟剖面为例[J]. 沉积学报,2021,39(5):1305-1319.
Liu Jianqing, He Li, He Ping, et al. Geochemical characteristics and significance of the Qiongzhusi Formation on the eastern margin of the ancient Kangding-Yunnan Land: Taking the Xinchanggou section of Zhaoyang district, Zhaotong city, Yunnan province as an example[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1305-1319. |
[8] |
Liu Z X, Yan D T, Du X B, et al. Organic matter accumulation of the Early Cambrian black shales on the flank of Micangshan-Hannan uplift, northern Upper Yangtze Block, South China[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108378. |
[9] |
Xiang L, Schoepfer S D, Zhang H, et al. Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J]. Precambrian Research, 2018, 313: 68-77. |
[10] |
Zheng S C, Feng Q L, Tribovillard N, et al. New insight into factors controlling organic matter distribution in Lower Cambrian source rocks: A study from the Qiongzhusi Formation in South China[J]. Journal of Earth Science, 2020, 31(1): 181-194. |
[11] |
Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated Later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. |
[12] |
Chang H J, Chu X L, Feng L J, et al. Marine redox stratification on the earliest Cambrian (ca. 542-529 Ma) Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 75-85. |
[13] |
邱振,韦恒叶,刘翰林,等. 异常高有机质沉积富集过程与元素地球化学特征[J]. 石油与天然气地质,2021,42(4):931-948.
Qiu Zhen, Wei Hengye, Liu Hanlin, et al. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J]. Oil & Gas Geology, 2021, 42(4): 931-948. |
[14] |
Nie Y, Fu X G, Xu W L, et al. Redox conditions and climate control on organic matter accumulation and depletion during the Toarcian in the Qiangtang Basin, eastern Tethys[J]. International Journal of Earth Sciences, 2020, 109(6): 1977-1990. |
[15] |
Wei H Y, Jiang X C. Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation: Constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, Inner Mongolia, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 162-179. |
[16] |
Cheng M, Li C, Jin C S, et al. Evidence for high organic carbon export to the Early Cambrian seafloor[J]. Geochimica et Cosmochimica Acta, 2020, 287: 125-140. |
[17] |
李智武. 中—新生代大巴山前陆盆地—冲断带的形成演化[D]. 成都:成都理工大学,2006:186-202.
Li Zhiwu. Meso-Cenozoic evolution of Dabashan Foreland Basin-thrust belt, central China[D]. Chengdu: Chengdu University of Technology, 2006: 186-202. |
[18] |
张国伟,张本仁,肖庆辉,等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社,2001:1-855.
Zhang Guowei, Zhang Benren, Xiao Qinghui, et al. Qinling orogenic beit and continental dynamics[M]. Beijing: Science Press, 2001: 1-855. |
[19] |
郭正吾,邓康龄,韩永辉,等. 四川盆地形成与演化[M]. 北京:地质出版社,1996:100-162.
Guo Zhengwu, Deng Kangling, Han Yonghui, et al. The formation and development of Sichuan Basin[M]. Beijing: Geological Publish House, 1996: 100-162. |
[20] |
王剑,刘宝珺,潘桂棠. 华南新元古代裂谷盆地演化:Rodinia超大陆解体的前奏[J]. 矿物岩石,2001,21(3):135-145.
Wang Jian, Liu Baojun, Pan Guitang. Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 135-145. |
[21] |
Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. |
[22] |
王剑,潘桂棠. 中国南方古大陆研究进展与问题评述[J]. 沉积学报,2009,27(5):818-825.
Wang Jian, Pan Guitang. Neoproterozoic South China palaeocontinents: An overview[J]. Acta Sedimentologica Sinica, 2009, 27(5): 818-825. |
[23] |
Zhang J P, Fan T L, Algeo T J, et al. Paleo-marine environments of the Early Cambrian Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 66-79. |
[24] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[25] |
McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109. |
[26] |
Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. |
[27] |
Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. |
[28] |
Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G–L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14. |
[29] |
Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. |
[30] |
Berner R A, Kothavala Z. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301(2): 182-204. |
[31] |
Eldrett J S, Ma C, Bergman S C, et al. Origin of limestone-marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous western interior seaway, USA[J]. Earth and Planetary Science Letters, 2015, 423: 98-113. |
[32] |
赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.
Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. |
[33] |
Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 65-83. |
[34] |
McGinn A P, Evenson K R, Herring A H, et al. The relationship between leisure, walking, and transportation activity with the natural environment[J]. Health & Place, 2007, 13(3): 588-602. |
[35] |
Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391. |
[36] |
Chen Z P, Cui J P, Ren Z L, et al. Geochemistry, paleoenvironment and mechanism of organic-matter enrichment in the Lower Silurian Longmaxi Formation shale in the Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(3): 505-519. |
[37] |
Walker W J, Cronan C S, Patterson H H. A kinetic study of aluminum adsorption by aluminosilicate clay minerals[J]. Geochimica et Cosmochimica Acta, 1988, 52(1): 55-62. |
[38] |
Murphy J B. Geochemistry of the Neoproterozoic metasedimentary Gamble Brook Formation, Avalon terrane, Nova Scotia: Evidence for a rifted-arc environment along the west gondwanan margin of rodinia[J]. The Journal of Geology, 2002, 110(4): 407-419. |
[39] |
Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25. |
[40] |
Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016. |
[41] |
Mohialdeen I M J, Hakimi M H. Geochemical characterisation of Tithonian-Berriasian chia Gara organic-rich rocks in northern Iraq with an emphasis on organic matter enrichment and the relationship to the bioproductivity and anoxia conditions[J]. Journal of Asian Earth Sciences, 2016, 116: 181-197. |
[42] |
韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.
Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. |
[43] |
Lehmann B, Nägler T F, Holland H D, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 2007, 35(5): 403-406. |
[44] |
Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88. |
[45] |
Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155. |
[46] |
常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.
Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165. |
[47] |
Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188. |
[48] |
Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8): 1265-1279. |
[49] |
Wei H Y, Tang W, Gu H, et al. Chemostratigraphy and pyrite morphology across the Wuchiapingian-Changhsingian boundary in the Middle Yangtze Platform, South China[J]. Geological Journal, 2021, 56(12): 6102-6116. |
[50] |
Takahashi S, Yamasaki S I, Ogawa K, et al. Redox conditions in the end-early Triassic Panthalassa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 15-28. |
[51] |
Wei H Y, Zhang X, Qiu Z. Millennial-scale ocean redox and δ13C changes across the Permian-Triassic transition at Meishan and implications for the biocrisis[J]. International Journal of Earth Sciences, 2020, 109(5): 1753-1766. |
[52] |
Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193. |
[53] |
卢正伟,唐玄,张同伟,等. 上扬子地区下寒武统牛蹄塘组页岩中黄铁矿特征及其地质意义[J]. 石油实验地质,2021,43(4):599-610.
Lu Zhengwei, Tang Xuan, Zhang Tongwei, et al. Existence and geological significance of pyrite in the organic-rich shale of Lower Cambrian Niutitang Formation in Upper Yangtze region[J]. Petroleum Geology and Experiment, 2021, 43(4): 599-610. |