[1] Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins[J]. Earth-Science Reviews, 2006, 74(1/2): 1-72.
[2] Sun J M, Ye J, Wu W Y, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38(6): 515-518.
[3] Gavillot Y, Axen G J, Stockli D F, et al. Timing of thrust activity in the High Zagros fold-thrust belt, Iran, from (U-Th)/He thermochronometry[J]. Tectonics, 2010, 29(4): TC4025.
[4] 朱日祥,赵盼,赵亮. 新特提斯洋演化与动力过程[J]. 中国科学(D辑):地球科学,2022,52(1):1-25.[

Zhu Rixiang, Zhao Pan, Zhao Liang. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Science China (Seri. D): Earth Sciences, 2022, 52(1): 1-25.
[5] Alavi M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution[J]. American Journal of Science, 2004, 304(1): 1-20.
[6] Zhang Z Y, Xiao W J, Majidifard M R, et al. Detrital zircon pro-venance analysis in the Zagros orogen, SW Iran: Implications for the amalgamation history of the Neo-Tethys[J]. International Journal of Earth Sciences, 2017, 106(4): 1223-1238.
[7] Bialik O M, Frank M, Betzler C, et al. Two-step closure of the Miocene Indian Ocean gateway to the Mediterranean[J]. Scientific Reports, 2019, 9(1): 8842.
[8] Pirouz M, Simpson G, Castelltort S, et al. Controls on the sequence stratigraphic architecture of the Neogene Zagros foreland basin[M]//Sorkhabi R. Tectonic evolution, collision, and seismicity of southwest Asia: In honor of Manuel Berberian’s forty-five years of research contributions. Boulder, Colorado: The Geological Society of America, 2017: 399-421.
[9] Allen M B, Armstrong H A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1/2): 52-58.
[10] Mazhari S A, Bea F, Amini S, et al. The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan zone, NW Iran: A marker of the end of the collision in the Zagros orogen[J]. Journal of the Geological Society, 2009, 166(1): 53-69.
[11] Guest B, Axen G J, Lam P S, et al. Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation[J]. Geosphere, 2006, 2(1): 35-52.
[12] Vincent S J, Allen M B, Ismail-Zadeh A D, et al. Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region[J]. Geological Society of America Bulletin, 2005, 117(11/12): 1513-1533.
[13] Dargahi S, Arvin M, Pan Y M, et al. Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continental collision[J]. Lithos, 2010, 115(1/2/3/4): 190-204.
[14] Ballato P, Mulch A, Landgraf A, et al. Middle to Late Miocene middle eastern climate from stable oxygen and carbon isotope data, southern Alborz Mountains, N Iran[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 125-138.
[15] Axen G J, Lam P S, Grove M, et al. Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics[J]. Geology, 2001, 29(6): 559-562.
[16] James G A, Wynd J G. Stratigraphic nomenclature of Iranian oil consortium agreement area[J]. AAPG Bulletin, 1965, 49(12): 2182-2245.
[17] Motiei H. Stratigraphy of Zagros[J]. Treatise on the Geology of Iran, 1993, 1: 60-151.
[18] Homke S, Vergés J, Garcés M, et al. Magnetostratigraphy of Miocene-Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan province, Iran)[J]. Earth and Planetary Science Letters, 2004, 225(3/4): 397-410.
[19] Pirouz M, Simpson G, Chiaradia M. Constraint on foreland basin migration in the Zagros Mountain belt using Sr isotope stratigraphy[J]. Basin Research, 2015, 27(6): 714-728.
[20] Sun J M, Sheykh M, Ahmadi N, et al. Permanent closure of the tethyan seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 564: 110172.
[21] Bahroudi A, Koyi H A. Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin[J]. Marine and Petroleum Geology, 2004, 21(10): 1295-1310.
[22] 李佳纬,孙继敏,吕丽星,等. 扎格罗斯前陆盆地晚中新世快速剥露证据:来自磷灰石(U-Th)/He的约束[J]. 地质学报,2020,94(12):3674-3688.

Li Jiawei, Sun Jimin, Lixing Lü, et al. Evidence of rapid Miocene exhumation of the Zagros Foreland Basin: Constraints from apatite (U-Th)/He ages[J]. Acta Geologica Sinica, 2020, 94(12): 3674-3688.
[23] Agard P, Omrani J, Jolivet L, et al. Zagros orogeny: A subduction-dominated process[J]. Geological Magazine, 2011, 148(5/6): 692-725.
[24] Homke S, Vergés J, Serra-Kiel J, et al. Late Cretaceous-Paleocene formation of the proto-Zagros foreland basin, Lurestan province, SW Iran[J]. Geological Society of America Bulletin, 2009, 121(7/8): 963-978.
[25] Homke S, Vergés J, van der Beek P, et al. Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: Evidence for a long-lived orogeny[J]. Basin Research, 2010, 22(5): 659-680.
[26] Alavi M. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations[J]. Tectonophysics, 1994, 229(3/4): 211-238.
[27] Darin M H, Umhoefer P J. Diachronous initiation of Arabia-Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since Middle Eocene time[J]. International Geology Review, 2022, 64(18): 2653-2681.
[28] Chiu H Y, Chung S L, Zarrinkoub M H, et al. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny[J]. Lithos, 2013, 162-163: 70-87.
[29] Verdel C, Wernicke B P, Hassanzadeh J, et al. A Paleogene extensional arc flare-up in Iran[J]. Tectonics, 2011, 30(3): TC3008.
[30] Hassanzadeh J, Wernicke B P. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions[J]. Tectonics, 2016, 35(3): 586-621.
[31] Shahbazi H, Siebel W, Pourmoafee M, et al. Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan zone (Iran): New evidence for Jurassic magmatism[J]. Journal of Asian Earth Sciences, 2010, 39(6): 668-683.
[32] Alizadeh A, López Martínez M, Sarkarinejad K. 40Ar-39Ar Geochronology in a gneiss dome within the Zagros Orogénic Belt[J]. Comptes Rendus Geoscience, 2010, 342(11): 837-846.
[33] Shakerardakani F, Neubauer F, Masoudi F, et al. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry[J]. Tectonophysics, 2015, 647-648: 146-171.
[34] Babaie H A, Babaei A, Ghazi A M, et al. Geochemical, 40Ar/39Ar age, and isotopic data for crustal rocks of the Neyriz Ophiolite, Iran[J]. Canadian Journal of Earth Sciences, 2006, 43(1): 57-70.
[35] Moritz R, Ghazban F, Singer B S. Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, western Iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen[J]. Economic Geology, 2006, 101(8): 1497-1524.
[36] Mahmoudi S, Corfu F, Masoudi F, et al. U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan zone, Iran[J]. Journal of Asian Earth Sciences, 2011, 41(3): 238-249.
[37] Badr M J, Masoudi F, Collins A S, et al. Mineralogical evidence for regional metamorphism overprinted by contact metamorphism[J]. Acta Geologica Sinica, 2012, 86(1): 48-64.
[38] Sheikholeslami R, Bellon H, Emami H, et al. Nouvelles données structurales et datations 40K-40Ar sur les roches métamorphiques de la région de Neyriz (zone de Sanandaj-Sirjan, Iran méridional). Leur intérêt dans le cadre du domaine néo-téthysien du Moyen-Orient[J]. Comptes Rendus Geoscience, 2003, 335(13): 981-991.
[39] Delaloye M, Desmons J. Ophiolites and melange terranes in Iran: A geochronological study and its paleotectonic implications[J]. Tectonophysics, 1980, 68(1/2): 83-111.
[40] Ao S J, Xiao W J, Jafari M K, et al. U-Pb zircon ages, field geo-logy and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys[J]. Gondwana Research, 2016, 31: 305-318.
[41] Moghadam H S, Stern R J. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophio-lites[J]. Journal of Asian Earth Sciences, 2015, 100: 31-59.
[42] Lanphere M A, Pamić J. 40Ar/39Ar Ages and tectonic setting of ophiolite from the Neyriz area, southeast Zagros range, Iran[J]. Tectonophysics, 1983, 96(3/4): 245-256.
[43] Shafaii Moghadam H, Stern R J. Geodynamic evolution of Upper Cretaceous Zagros ophiolites: Formation of oceanic lithosphere above a nascent subduction zone[J]. Geological Magazine, 2011, 148(5/6): 762-801.
[44] Hessami K, Koyi H A, Talbot C J, et al. Progressive unconformities within an evolving foreland fold-thrust belt, Zagros Mountains[J]. Journal of the Geological Society, 2001, 158(6): 969-981.
[45] Leturmy P, Molinaro M, de Lamotte D F. Structure, timing and morphological signature of hidden reverse basement faults in the Fars Arc of the Zagros (Iran)[J]. Geological Society, London, Special Publications, 2010, 330(1): 121-138.
[46] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology[M]. Berlin, Heidelberg: Springer, 1996: 1-582.
[47] Blair T C, McPherson J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3a): 450-489.
[48] Sun J M, Sheykh M, Windley B F, et al. Magnetostratigraphic age control of the timing of tectonic deformation and the shifting depositional environments in the Dezful Embayment, Iran[J]. Tectonics, 2022, 41(1): e2021TC006881.
[49] Gazzi P. Le arenarie del flysch sopracretaceo dell’Appennino modenese: Correlazioni con il flysch di Monghidoro[J]. Minera-logica et Petrografica Acta, 1966, 12: 69-97.
[50] Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Research, 1970, 40(2): 695-707.
[51] 何杰,王华, Garzanti E. 砂岩(砂)的岩相分析和分类标准[J]. 地球科学,2020,45(6):2186-2198.

He Jie, Wang Hua, Garzanti E. Petrographic analysis and classification of sand and sandstone[J]. Earth Science, 2020, 45(6): 2186-2198.
[52] Liu L, Qiu J S, Li Z. Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang province, southeast China: Implications for magma mixing and crust-mantle interaction[J]. Lithos, 2013, 160-161: 145-163.
[53] Achterbergh V E, Ryan C G, Jackson S E, et al. Data reduction software for LA-ICP-MS[C]. Laser Ablation–ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, 2001: 239-243.
[54] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[55] Ludwig K R. User’s manual for Isoplot/Ex, Version 3.00, a geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, 2003.
[56] 谢皓程. 伊朗札格罗斯造山带中部迪兹富勒海湾碎屑锆石研究[D]. 台北,中国:台湾大学,2016.

Hsieh H C. Detrital zircon study of the Dezful Embayment in the central Zagros, southwest Iran[D]. Taipei, China: Taiwan University, 2016.
[57] Sepahi A A, Jafari S R, Osanai Y, et al. Age, petrologic significance and provenance analysis of the Hamedan low-pressure migmatites; Sanandaj-Sirjan zone, west Iran[J]. International Geology Review, 2019, 61(12): 1446-1461.
[58] Fergusson C L, Nutman A P, Mohajjel M, et al. The Sanandaj-Sirjan zone in the Neo-Tethyan suture, western Iran: Zircon U-Pb evidence of Late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis[J]. Gondwana Research, 2016, 40: 43-57.
[59] Zare-Shooli M, Tahmasbi Z, Ao S J, et al. Petrogenesis and U-Pb zircon geochronology of migmatitzation during Neo-Tethyan Jurassic magmatic arc extension: The Boroujerd example, western Iran[J]. Lithos, 2021, 398-399: 106278.
[60] Shakerardakani F, Neubauer F, Liu X M, et al. New detrital zircon U-Pb insights on the palaeogeographic origin of the central Sanandaj-Sirjan zone, Iran[J]. Geological Magazine, 2021, 158(12): 2165-2186.
[61] GholamiZadeh P, Hu X M, Garzanti E, et al. Constraining the timing of Arabia-Eurasia collision in the Zagros orogen by sandstone provenance (Neyriz, Iran)[J]. GSA Bulletin, 2022, 134(7/8): 1793-1810.
[62] Jafari S R, Sepahi A A, Osanai Y. LA-ICP-MS zircon U-Pb geochronology on migmatites from the Boroujerd region, Sanandaj-Sirjan zone, Zagros orogen, Iran: Provenance analysis and metamorphic age[J]. Geopersia, 2020, 10(2): 367-380.
[63] Horton B K, Hassanzadeh J, Stockli D F, et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics[J]. Tectonophysics, 2008, 451(1/2/3/4): 97-122.
[64] Omer M F, Friis H, Kokfelt T F, et al. Provenance of northern Gondwana Lower Ordovician sandstones (Khabour Formation, northern Iraq) revealed by detrital zircon using LA-ICP-MS dating[J]. Geological Journal, 2021, 56(10): 4905-4922.
[65] Al-Juboury A I, Morton A, Shingaly W S, et al. Stratigraphy and age revision of the Pirispiki Formation, Kurdistan region, northern Iraq[J]. Arabian Journal of Geosciences, 2020, 13(14): 593.
[66] Jones B G, Ali S A, Nutman A P. Provenance of Tanjero and red bed clastic sedimentary rocks revealed by detrital zircon SHRIMP dating, Kurdistan region, NE Iraq: Constraints on ocean closure and unroofing of Neo-Tethyan allochthons[J]. Journal of African Earth Sciences, 2020, 172: 103981.
[67] Koshnaw R I, Horton B K, Stockli D F, et al. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq[J]. Tectonophysics, 2017, 694: 332-355.
[68] Barber D E, Stockli D F, Horton B K, et al. Cenozoic exhumation and foreland basin evolution of the Zagros orogen during the Arabia-Eurasia collision, western Iran[J]. Tectonics, 2018, 37(12): 4396-4420.
[69] Cai F L, Ding L, Wang H Q, et al. Configuration and timing of collision between Arabia and Eurasia in the Zagros collision zone, Fars, southern Iran[J]. Tectonics, 2021, 40(8): e2021TC006762.
[70] Koshnaw R I, Horton B K, Stockli D F, et al. Sediment routing in the Zagros foreland basin: Drainage reorganization and a shift from axial to transverse sediment dispersal in the Kurdistan region of Iraq[J]. Basin Research, 2020, 32(4): 688-715.
[71] Koshnaw R I, Stockli D F, Schlunegger F. Timing of the Arabia-Eurasia continental collision: Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq[J]. Geology, 2019, 47(1): 47-50.
[72] Koshnaw R I, Schlunegger F, Stockli D F. Detrital zircon pro-venance record of the Zagros Mountain building from the Neotethys obduction to the Arabia-Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq[J]. Solid Earth, 2021, 12(11): 2479-2501.
[73] Aziz N R H, Sadiq D M, Aswad K J. U-Pb detrital zircon dating of Middle Eocene clastic rocks from the Gercus Formation, NE Iraq: New constraints on their provenance, and tectonic evolution[J]. Iraqi Geological Journal, 2021, 54(1C): 1-15.
[74] Barber D E, Stockli D F, Galster F. The proto-Zagros foreland basin in Lorestan, western Iran: Insights from Multimineral detrital geothermochronometric and trace elemental provenance analysis[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 2657-2680.
[75] Aziz N R H, Sadiq D M. U-Pb Zircon dating of Upper Cretaceous siliciclastic rocks from the Tanjero Flysch, NE Iraq: New constraints on their provenance and tectonic evolution[J]. Kuwait Journal of Science, 2020, 47(4): 106-117.
[76] Zhang Z Y, Xiao W J, Ji W Q, et al. Geochemistry, zircon U-Pb and Hf isotope for granitoids, NW Sanandaj-Sirjan zone, Iran: Implications for Mesozoic-Cenozoic episodic magmatism during Neo-Tethyan lithospheric subduction[J]. Gondwana Research, 2018, 62: 227-245.
[77] Fakhari M D, Axen G J, Horton B K, et al. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros[J]. Tectonophysics, 2008, 451(1/2/3/4): 170-185.