[1] |
Licht A, van Cappelle M, Abels H A, et al. Asian monsoons in a Late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506. |
[2] |
Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan Plateau starting 40? Myr ago[J]. Nature, 1998, 394(6695): 769-773. |
[3] |
Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. |
[4] |
Kapp P, DeCelles P G. Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. |
[5] |
Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review[J]. Earth-Science Reviews, 2015, 143: 36-61. |
[6] |
Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992. |
[7] |
Wang C S, Dai J G, Zhao X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 2014, 621: 1-43. |
[8] |
Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. |
[9] |
Su T, Farnsworth A, Spicer R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189. |
[10] |
Su T, Spicer R A, Wu F X, et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52): 32989-32995. |
[11] |
Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. |
[12] |
林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20.
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. |
[13] |
朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870.
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. |
[14] |
徐长贵,杜晓峰,徐伟,等. 沉积盆地“源—汇”系统研究新进展[J]. 石油与天然气地质,2017,38(1):1-11.
Xu Changgui, Du Xiaofeng, Xu Wei, et al. New advances of the “Source-to-Sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. |
[15] |
Han Z P, Sinclair H D, Li Y L, et al. Internal drainage has sustained low-relief Tibetan landscapes since the Early Miocene[J]. Geophysical Research Letters, 2019, 46(15): 8741-8752. |
[16] |
DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to Middle Tertiary basin evolution in the central Tibetan Plateau : Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. GSA Bulletin, 2007, 119(5/6): 654-680. |
[17] |
Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19. |
[18] |
Milliman J D, Syvitski J. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544. |
[19] |
Mulder T, Syvitski J P M. Climatic and morphologic relationships of rivers: Implications of sea-level fluctuations on river loads[J]. The Journal of Geology, 1996, 104(5): 509-523. |
[20] |
Helland-Hansen W, Sømme T O, Martinsen O J, et al. Deciphering earth’s natural hourglasses: Perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1008-1033. |
[21] |
Brewer C J, Hampson G J, Whittaker A C, et al. Comparison of methods to estimate sediment flux in ancient sediment routing systems[J]. Earth-Science Reviews, 2020, 207: 103217. |
[22] |
Zhang J Y, Covault J, Pyrcz M, et al. Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico[J]. AAPG Bulletin, 2018, 102(9): 1685-1702. |
[23] |
Harrison R L. Introduction to Monte Carlo simulation[J]. AIP Conference Proceedings, 2010, 1204(1): 17-21. |
[24] |
Raychaudhuri S. Introduction to Monte Carlo simulation[C]//2008 Winter Simulation Conference. Miami: IEEE, 2008: 91-100. |
[25] |
Allen P A, Armitage J J, Carter A, et al. The Qs problem: Sediment volumetric balance of proximal foreland Basin systems[J]. Sedimentology, 2013, 60(1): 102-130. |
[26] |
DeCelles P G, Quade J, Kapp P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 2007, 253(3/4): 389-401. |
[27] |
Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. GSA Bulletin, 2007, 119(7/8): 917-933. |
[28] |
密文天,朱利东,杨文光,等. 西藏尼玛盆地北部古近系牛堡组物源及地质意义[J]. 地球科学,2017,42(2):240-257.
Mi Wentian, Zhu Lidong, Yang Wenguang, et al. Provenance of the Niubao Formation and its geological implications in the north depression of the Nima Basin in the Tibet[J]. Earth Science, 2017, 42(2): 240-257. |
[29] |
密文天,杨文光,朱利东,等. 西藏尼玛盆地南部古近系物源分析及地质意义[J]. 大地构造与成矿学,2018,42(1):177-192.
Mi Wentian, Yang Wenguang, Zhu Lidong, et al. Provenance of Paleogene sediments in the south depression of Nima Basin, central Tibet and its geological implications[J]. Geotectonica et Metallogenia, 2018, 42(1): 177-192. |
[30] |
Eide C H, Müller R, Helland-Hansen W. Using climate to relate water discharge and area in modern and ancient catchments[J]. Sedimentology, 2018, 65(4): 1378-1389. |
[31] |
Milliman J D, Farnsworth K L. River discharge to the coastal ocean: A global synthesis[M]. New York: Cambridge University Press, 2011: 13-69. |
[32] |
Zhu D C, Wang Q, Cawood P A, et al. Raising the Gangdese Mountains in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 214-223. |
[33] |
Xu Q, Ding L, Zhang L Y, et al. Paleogene high elevations in the Qiangtang terrane, central Tibetan Plateau[J]. Earth and Planetary Science Letters, 2013, 362: 31-42. |
[34] |
Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436. |
[35] |
Deng L H, Jia G D. High-relief topography of the Nima Basin in central Tibetan Plateau during the mid-Cenozoic time[J]. Chemical Geology, 2018, 493: 199-209. |
[36] |
Wu F X, Miao D S, Chang M M, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene[J]. Scientific Reports, 2017, 7(1): 878. |
[37] |
Jia G D, Bai Y, Ma Y J, et al. Paleoelevation of Tibetan Lunpola Basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015, 126: 14-22. |
[38] |
Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
[39] |
Zhang L M, Wang C S, Li X H, et al. A new paleoclimate classification for deep time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 98-106. |
[40] |
Parker G. 1D sediment transport morphodynamics with applications to rivers and turbidity currents[M]. E-book available at Gary Parker’s Morphodynamics Web Page, 2004. |
[41] |
赵斌. 西藏尼玛盆地结构构造特征及其油气意义[D]. 北京:中国地质大学(北京),2013.
Zhao Bin. Structure characteristics and its petroleum significance of the Nima Basin, central Tibet[D]. Beijing: China University of Geosciences (Beijing), 2013. |
[42] |
Lyster S J, Whittaker A C, Allison P A, et al. Predicting sediment discharges and erosion rates in deep time—examples from the Late Cretaceous North American continent[J]. Basin Research, 2020, 32(6): 1547-1573. |
[43] |
Hetzel R, Dunkl I, Haider V, et al. Peneplain Formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 2011, 39(10): 983-986. |
[44] |
Rohrmann A, Kapp P, Carrapa B, et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma[J]. Geology, 2012, 40(2): 187-190. |
[45] |
Ingalls M, Rowley D B, Currie B S, et al. Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet[J]. American Journal of Science, 2020, 320(6): 479-532. |
[46] |
Hren M T, Sheldon N D. Temporal variations in lake water temperature : Paleoenvironmental implications of lake carbonate δ18O and temperature records[J]. Earth and Planetary Science Letters, 2012, 337-338: 77-84. |
[47] |
Ma P F, Wang C S, Meng J, et al. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records[J]. Gondwana Research, 2017, 48: 224-236. |
[48] |
Sømme T O, Helland-Hansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
[49] |
Nyberg B, Gawthorpe R L, Helland-Hansen W. The distribution of rivers to terrestrial sinks: Implications for sediment routing systems[J]. Geomorphology, 2018, 316: 1-23. |
[50] |
Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the Latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 21-30. |
[51] |
Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau : Progress and contradictions[J]. National Science Review, 2015, 2(4): 417-437. |
[52] |
Cao M M, Sun J M, Liu W G, et al. Paleoclimatic fluctuations inferred from leaf wax n-alkane records in central Tibet in the Late Oligocene to Early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 539: 109504. |
[53] |
李生辰,徐亮,郭英香,等. 近34 a青藏高原年气温变化[J]. 中国沙漠,2006,26(1):27-34.
Li Shengchen, Xu Liang, Guo Yingxiang, et al. Change of annual air temperature over Qinghai-Tibet Plateau during recent 34 years[J]. Journal of Desert Research, 2006, 26(1): 27-34. |