[1] 王丹,凌洪飞, Ulrich S,等. 湖南会同寒武纪早期有机碳同位素地层学研究[J]. 高校地质学报,2016,22(2):274-288.

Wang Dan, Ling Hongfei, Ulrich S, et al. Organic carbon isotope stratigraphy of the Early Cambrian Huitong section in Hunan province, Southeastern Yangtze, China[J]. Geological Journal of China Universities, 2016, 22(2): 274-288.
[2] 高波,刘忠宝,舒志国,等. 中上扬子地区下寒武统页岩气储层特征及勘探方向[J]. 石油与天然气地质,2020,41(2):284-294.

Gao Bo, Liu Zhongbao, Shu Zhiguo, et al. Reservoir characteristics and exploration of the Lower Cambrian shale gas in the Middle-Upper Yangtze area[J]. Oil & Gas Geology, 2020, 41(2): 284-294.
[3] 范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,2021,39(4):1004-1019.

Fan Haijing, Deng Hucheng, Fu Meiyan, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019.
[4] 马新华,张晓伟,熊伟,等. 中国页岩气发展前景及挑战[J]. 石油科学通报,2023,8(4):491-501.

Ma Xinhua, Zhang Xiaowei, Xiong Wei, et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin, 2023, 8(4): 491-501
[5] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (∼529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
[6] Li C, Shi W, Cheng M, et al. The redox structure of Ediacaran and early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149.
[7] 朱茂炎,赵方臣,殷宗军,等. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学,2019,49(10):1455-1490.

Zhu Maoyan, Zhao Fangchen, Yin Zongjun, et al. The Cambrian explosion: Advances and perspectives from China[J]. Science China Earth Sciences, 2019, 49(10): 1455-1490.
[8] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83.
[9] Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6: 7142.
[10] Wei G Y, Planavsky N J, Tarhan L G, et al. Highly dynamic marine redox state through the Cambrian explosion highlighted by authigenic δ 238U records[J]. Earth and Planetary Science Letters, 2020, 544: 116361.
[11] Wei W, Chen X, Ling H F, et al. Vanadium isotope evidence for widespread marine oxygenation from the Late Ediacaran to Early Cambrian[J]. Earth and Planetary Science Letters, 2023, 602: 117942.
[12] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
[13] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated Later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
[14] Sperling E A, Wolock C J, Morgan A S, et al. Statistical analysis of iron geochemical data suggests limited Late Proterozoic oxygenation[J]. Nature, 2015, 523(7561): 451-454.
[15] Guo Q J, Strauss H, Liu C Q, et al. Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 140-157.
[16] Feng L J, Li C, Huang J, et al. A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca. 529-521Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
[17] 金承胜. 华南寒武纪早期海洋氧化还原状态时空波动及其与早期动物的协同演化[D]. 武汉:中国地质大学,2017.

Jin Chengsheng. Spatiotemporal variations of ocean redox conditions and its co-evolution with early animals during the Early Cambrian, South China[D]. Wuhan: China University of Geosciences, 2017.
[18] Li C, Cheng M, Algeo T J, et al. A theoretical prediction of chemical zonation in early oceans (>520 Ma)[J]. Science China Earth Sciences, 2015, 58(11): 1901-1909.
[19] Li Z H, Zhang M, Chen Z Q, et al. Early Cambrian oceanic oxygenation and evolution of early animals: A critical review from the South China Craton[J]. Global and Planetary Change, 2021, 204: 103561.
[20] Wei G Y, Planavsky N J, He T C, et al. Global marine redox evolution from the Late Neoproterozoic to the Early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506.
[21] Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188.
[22] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14.
[23] 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.

Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165.
[24] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
[25] Muramoto J A, Honjo S, Fry B, et al. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(Suppl.2): S1151-S1187.
[26] 王东升,张金川,李振,等. 草莓状黄铁矿的形成机制探讨及其对古氧化—还原环境的反演[J]. 中国地质,2022,49(1):36-50.

Wang Dongsheng, Zhang Jinchuan, Li Zhen, et al. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 2022, 49(1): 36-50.
[27] Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1244-1263.
[28] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
[29] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399-1416.
[30] 胡永亮,王伟,周传明. 沉积地层中的黄铁矿形态及同位素特征初探:以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报,2020,38(1):138-149.

Hu Yongliang, Wang Wei, Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 138-149.
[31] Wilkin R T, Barnes H L. Pyrite Formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179.
[32] Ohfuji H, Rickard D. Experimental syntheses of framboids A review[J]. Earth-Science Reviews, 2005, 71(3/4): 147-170.
[33] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552.
[34] Wang P K, Huang Y J, Wang C S, et al. Pyrite morphology in the First member of the Late Cretaceous Qingshankou Formation, Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 125-136.
[35] 宋辉,邵德勇,罗欢,等. 鄂西宜昌地区下寒武统水井沱组草莓状黄铁矿SEM图像特征及古环境指示意义:以鄂阳页1井为例[J]. 地学前缘,2023,30(3):195-207.

Song Hui, Shao Deyong, Luo Huan, et al. Study on framboidal pyrite characters with SEM images and its indicative significance of paleo-environment in the Lower Cambrian Shuijingtuo Formation of Yichang area, western Hubei province, South China: A case study of well EYY1[J]. Earth Science Frontiers, 2023, 30(3): 195-207.
[36] 古恒,王剑,韦恒叶,等. 四川盆地城口地区下寒武统水井沱组有机质富集控制因素[J]. 沉积学报,2024,42(3):1073-1091.

Gu Heng, Wang Jian, Wei Hengye, et al. Controlling factors of Organic Enrichment in the Shuijingtuo Formation in the Lower Cambrian of the Chengkou area, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1073-1091.
[37] 杨丽亚,沈均均,陈孔全,等. 基于矿物岩石学和地球化学分析的页岩古环境演化与有机质富集关系:以川西地区下寒武统筇竹寺组为例[J]. 东北石油大学学报,2022,46(5):40-54.

Yang Liya, Shen Junjun, Chen Kongquan, et al. Relationship between paleoenvironmental evolution and organic matter enrichment of shale of the Lower Cambrian Qiongzhusi Formation in western Sichuan: Evidence from mineral petrology and geochemistry[J]. Journal of Northeast Petroleum University, 2022, 46(5): 40-54.
[38] 卢正伟,唐玄,张同伟,等. 上扬子地区下寒武统牛蹄塘组页岩中黄铁矿特征及其地质意义[J]. 石油实验地质,2021,43(4):599-610.

Lu Zhengwei, Tang Xuan, Zhang Tongwei, et al. Existence and geological significance of pyrite in the organic-rich shale of Lower Cambrian Niutitang Formation in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2021, 43(4): 599-610.
[39] Wang W, Hu Y L, Muscente A D, et al. Revisiting Ediacaran sulfur isotope chemostratigraphy with in situ nanoSIMS analysis of sedimentary pyrite[J]. Geology, 2021, 49(6): 611-616.
[40] 邱玉超,罗冰,夏茂龙,等. 四川盆地长宁地区震旦系—寒武系裂陷槽的发现及其地质意义[J]. 天然气勘探与开发,2019,42(2):22-28.

Qiu Yuchao, Luo Bing, Xia Maolong, et al. Discovery and geological significance of Sinian-Cambrian rift trough, Changning area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(2): 22-28.
[41] 周国晓,魏国齐,胡国艺,等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学,2020,31(4):498-506.

Zhou Guoxiao, Wei Guoqi, Hu Guoyi, et al. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506.
[42] 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学,2019,44(3):738-755.

Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-Early Cambrian Tectonic-Sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
[43] 马奎,文龙,张本健,等. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发,2022,49(2):274-284.

Ma Kui, Wen Long, Zhang Benjian, et al. Segmented evolution of Deyang-Anyue rift trough in Sichuan Basin and its significance for oil and gas exploration[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284.
[44] 曹光耀,刘宇,侯明才,等. 川南威远地区早寒武世氮循环及古环境意义[J]. 沉积学报,2024,42(6):2031-2041.

Cao Guangyao, Liu Yu, Hou Mingcai, et al. Nitrogen cycle and paleoenvironmental implications in the Weiyuan area, southern Sichuan during the Early Cambrian[J]. Acta Sedimentologica Sinica, 2024, 42(3): 2031-2041.
[45] 梁霄,马韶光,李郭琴,等. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力:以四川盆地威远地区威207井为例[J]. 地质科技通报,2022,41(5):68-82.

Liang Xiao, Ma Shaoguang, Li Guoqin, et al. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82.
[46] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze Region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[47] Zhang Q Y, Liu E T, Pan S Q, et al. Multiple controls on organic matter accumulation in the intraplatform basin of the Early Cambrian Yangtze platform, South China[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1907.
[48] Liu S B, Jin S D, Liu Y, et al. Astronomical forced sequence infill of Early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, South China[J]. Sedimentary Geology, 2022, 440: 106261.
[49] Maclean L C W, Tyliszczak T, Gilbert P U P A, et al. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 2008, 6(5): 471-480.
[50] 蒋柯,周文,邓乃尔,等. 四川盆地五峰组—龙马溪组页岩储层中黄铁矿特征及地质意义[J]. 成都理工大学学报(自然科学版),2020,47(1):50-64.

Jiang Ke, Zhou Wen, Deng Naier, et al. Characteristics and geological significance of pyrites in Wufeng and Longmaxi Formation reservoir shale in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 50-64.
[51] Jiang S X, Mokhtari M, Borrok D, et al. Improving the total organic carbon estimation of the Eagle Ford Shale with density logs by considering the effect of pyrite[J]. Minerals, 2018, 8(4): 154.
[52] Guan C G, Zhou C M, Wang W, et al. Fluctuation of shelf basin redox conditions in the Early Ediacaran: Evidence from Lantian Formation black shales in South China[J]. Precambrian Research, 2014, 245: 1-12.
[53] 常华进,储雪蕾,冯连君,等. 华南老堡组硅质岩中草莓状黄铁矿:埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报,2009,25(4):1001-1007.

Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 2009, 25(4): 1001-1007.
[54] 左荃文. 基于NanoSIMS的早古生代海相页岩中黄铁矿的硫同位素研究及其对沉积环境的指示意义[D]. 北京:中国地质大学(北京),2020.

Zuo Quanwen. NanoSIMS sulfur isotope studies of pyrite from an Early Paleozoic marine shale: Implications for the sedimentary environment[D]. Beijing: China University of Geosciences (Beijing), 2020.
[55] Wacey D, Kilburn M R, Saunders M, et al. Uncovering framboidal pyrite biogenicity using Nano-scale CNorg mapping[J]. Geology, 2015, 43(1): 27-30.
[56] Huang Y G, Chen Z Q, Wignall P B, et al. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence[J]. GSA Bulletin, 2016, 129(1/2): 229-243.
[57] Wang Q W, Morse J W. Pyrite Formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2): 99-121.
[58] Canfield D E. Reactive iron in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632.