[1] Yuan D X. Rock desertification in the subtropical karst of South China[J]. Zeitschrift für Geomorphologie, 1997(108): 81-90.
[2] Zeng S B, Jiang Y J, Liu Z H. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS[J]. Global and Planetary Change, 2016, 144: 171-181.
[3] Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12.
[4] 罗旭玲,王世杰,白晓永,等. 西南喀斯特地区石漠化时空演变过程分析[J]. 生态学报,2021,41(2):680-693.

Luo Xuling, Wang Shijie, Bai Xiaoyong, et al. Analysis on the spatio-temporal evolution process of rocky desertification in southwest karst area[J]. Acta Ecologica Sinica, 2021, 41(2): 680-693.
[5] 程海,张海伟,赵景耀,等. 中国石笋古气候研究的回顾与展望[J]. 中国科学(D辑):地球科学,2019,49(10):1565-1589.

Cheng Hai, Zhang Haiwei, Zhao Jingyao, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China (Seri. D): Earth Sciences, 2019, 49(10): 1565-1589.
[6] Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the Lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275.
[7] 谭亮成,刘文,王甜莉,等. 石笋多指标记录揭示的山东中部森林采伐历史[J]. 中国科学(D辑):地球科学,2020,50(11):1643-1654.

Tan Liangcheng, Liu Wen, Wang Tianli, et al. A multiple-proxy stalagmite record reveals historical deforestation in central Shandong, northern China[J]. Science China (Seri. D): Earth Sciences, 2020, 50(11): 1643-1654.
[8] 黄伟,刘殿兵,王璐瑶,等. 洞穴石笋δ13C在古气候重建研究中的现状与进展[J]. 地球科学进展,2016,31(9):968-983.

Huang Wei, Liu Dianbing, Wang Luyao, et al. Research status and advance in carbon isotope (δ13C) variation from stalagmite[J]. Advances in Earth Science, 2016, 31(9): 968-983.
[9] Dorale J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from cold water cave, northeast Iowa[J]. Science, 1992, 258(5088): 1626-1630.
[10] Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice cave, Missouri, USA[J]. Science, 1998, 282(5395): 1871-1874.
[11] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3443-3457.
[12] Li T Y, Huang C X, Tian L J, et al. Variation of δ13C in plant-soil-cave systems in karst regions with different degrees of rocky desertification in southwest China and implications for paleoenvironment reconstruction[J]. Journal of Cave and Karst Studies, 2018, 80(4): 212-228.
[13] Li J Y, Li T Y. Seasonal and annual changes in soil/cave air pCO2 and the δ13CDIC of cave drip water in response to changes in temperature and rainfall[J]. Applied Geochemistry, 2018, 93: 94-101.
[14] Lu J Y, Zhang H W, Li H Y, et al. Climatic and anthropogenic influence on vegetation in southeastern China during the past 120 years inferred from speleothem[J]. Quaternary International, 2022, 625: 60-65.
[15] Kuo T S, Liu Z Q, Li H C, et al. Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by stalagmite ZJD-21[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1111-1120.
[16] Zhao M, Li H C, Liu Z H, et al. Changes in climate and vegetation of central Guizhou in southwest China since the last glacial reflected by stalagmite records from Yelang cave[J]. Journal of Asian Earth Sciences, 2015, 114: 549-561.
[17] Li H C, Bar-Matthews M, Chang Y P, et al. High-resolution δ18O and δ13C records during the past 65 ka from Fengyu cave in Guilin: Variation of monsoonal climates in South China[J]. Quaternary International, 2017, 441: 117-128.
[18] 陈朝军,袁道先,程海,等. 人类活动和气候变化触发了中国西南石漠化的扩张[J]. 中国科学(D辑):地球科学,2021,51(11):1950-1963.

Chen Chaojun, Yuan Daoxian, Cheng Hai, et al. Human activity and climate change triggered the expansion of rocky desertification in the karst areas of southwestern China[J]. Science China (Seri. D): Earth Sciences, 2021, 51(11): 1950-1963.
[19] Walker M, Gibbard P, Head M J, et al. Formal subdivision of the Holocene series/Epoch: A summary[J]. Journal of the Geological Society of India, 2019, 93(2): 135-141.
[20] Weiss H. Global megadrought, societal collapse and resilience at 4.2-3.9 ka BP across the Mediterranean and West Asia[J]. Past Global Change Magazine, 2016, 24(2): 62-63.
[21] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[22] Xiao X Y, Haberle S G, Li Y L, et al. Evidence of Holocene climatic change and human impact in northwestern Yunnan province: High-resolution pollen and charcoal records from Chenghai Lake, southwestern China[J]. The Holocene, 2018, 28(1): 127-139.
[23] Zeng M X, Zeng Q, Peng H J, et al. Late Holocene hydroclimatic changes inferred from a karst peat archive in the western Guizhou Plateau, SW China[J]. Journal of Asian Earth Sciences, 2022, 229: 105179.
[24] Jiang X Y, He Y Q, Shen C C, et al. Replicated stalagmite-inferred centennial-to decadal-scale monsoon precipitation variability in southwest China since the mid Holocene[J]. The Holocene, 2013, 23(6): 841-849.
[25] Jiang X Y, He Y Q, Wang X Y, et al. The Preboreal-like Asian monsoon climate in the early last interglacial period recorded from the Dark cave, Southwest China[J]. Journal of Asian Earth Sciences, 2017, 143: 39-44.
[26] Shen C C, Wu C C, Cheng H, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71-86.
[27] Edwards R L, Chen J H, Wasserburg G J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years[J]. Earth and Planetary Science Letters, 1987, 81(2/3): 175-192.
[28] Cheng H, Edwards R L, Shen C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91.
[29] Jaffey A H, Flynn K F, Glendenin L E, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889-1906.
[30] Hiess J, Condon D J, McLean N, et al. 238U/235U Systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335(6076): 1610-1614.
[31] Hercman H, Pawlak J. MOD-AGE: An age-depth model construction algorithm[J]. Quaternary Geochronology, 2012, 12: 1-10.
[32] Zhang H W, Cai Y J, Tan L C, et al. Large variations of δ13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3): 511-525.
[33] McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review[J]. Quaternary Science Reviews, 2004, 23(7/8): 901-918.
[34] 李红春,顾德隆, Stott L D,等. 北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶,1997,16(4):285-295.

Li Hongchun, Ku Telung, Stott L D, et al. Interannual-resolution δ13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in Shihua cave, Beijing[J]. Carsologica Sinica, 1997, 16(4): 285-295.
[35] Tan L C, Zhang H W, Qin S J, et al. Climatic and anthropogenic impacts on δ13C variations in a stalagmite from central China[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2013, 24(3): 333-343.
[36] Francey R J, Allison C E, Etheridge D M, et al. A 1000-year high precision record of δ13C in atmospheric CO2[J]. Tellus B: Chemical and Physical Meteorology, 1999, 51(2): 170-193.
[37] Li H C, Lee Z H, Wan N J, et al. The δ18O and δ13C records in an aragonite stalagmite from Furong cave, Chongqing, China: A-2000-year record of monsoonal climate[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1121-1130.
[38] Zhao M, Li H C, Shen C C, et al. δ18O, δ13C, elemental content and depositional features of a stalagmite from Yelang cave reflecting climate and vegetation changes since Late Pleistocene in central Guizhou, China[J]. Quaternary International, 2017, 452: 102-115.
[39] Zhang M L, Yuan D X, Lin Y S, et al. A 6000-year high-resolution climatic record from a stalagmite in Xiangshui cave, Guilin, China[J]. The Holocene, 2004, 14(5): 697-702.
[40] Li J Y, Li H C, Li T Y, et al. High-resolution δ18O and δ13C records of an AMS 14C and 230Th/U dated stalagmite from Xinya cave in Chongqing: Climate and vegetation change during the Late Holocene[J]. Quaternary International, 2017, 447: 75-88.
[41] Yin J J, Li H C, Tang W, et al. Rainfall variability and vegetation recovery in rocky desertification areas recorded in recently-deposited stalagmites from Guilin, South China[J]. Quaternary International, 2019, 528: 109-119.
[42] 吴涛. 靖康之变与开封人口的南迁[J]. 黄河科技大学学报,1999,1(1):55-60.

Wu Tao. The Jingkang Incident and the southward migration of population in Kaifeng[J]. Journal of Huanghe S&T University, 1999, 1(1): 55-60.
[43] 吴松弟. 南宋人口的发展过程[J]. 中国史研究,2001(4):107-124.

Wu Songdi. The development of the population during the southern Song Dynasty[J]. Journal of Chinese Historical Studies, 2001(4): 107-124.
[44] Cosford J, Qing H, Mattey D, et al. Climatic and local effects on stalagmite δ13C values at Lianhua cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1/2): 235-244.
[45] Park J, Park J, Yi S, et al. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula[J]. Scientific Reports, 2019, 9(1): 10806.
[46] Kathayat G, Cheng H, Sinha A, et al. The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12): e1701296.
[47] 张振球,张伟宏,刘树双,等. 贵州石笋记录的中晚全新世东亚夏季风变化[J]. 沉积学报,2023,41(1):196-205.

Zhang Zhenqiu, Zhang Weihong, Liu Shushuang, et al. Variation in the East Asian summer monsoon during the Middle and Late Holocene inferred from a stalagmite record in Guizhou, China[J]. Acta Sedimentologica Sinica, 2023,41(1): 196-205.
[48] Wang J L. Mid-Late Holocene stalagmite δ18O and δ13C records in Naduo cave, Guizhou province, China[J]. Journal of Chemistry, 2021, 2021: 7624833.
[49] Peng H J, Bao K S, Yuan L G, et al. Abrupt climate variability since the last deglaciation based on a high-resolution peat dust deposition record from southwest China[J]. Quaternary Science Reviews, 2021, 252: 106749.
[50] Liu D B, Wang Y J, Cheng H, et al. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China[J]. Quaternary Research, 2016, 85(3): 333-346.
[51] 张美良,程海,林玉石,等. 贵州荔波1.5万年以来石笋高分辨率古气候环境记录[J]. 地球化学,2004,33(1):65-74.

Zhang Meiliang, Cheng Hai, Lin Yushi, et al. High resolution paleoclimatic environment records from a stalagmite of Dongge cave since 15 000 a in Libo, Guizhou province, China[J]. Geochimica, 2004, 33(1): 65-74.
[52] 赵侃. 贵州董哥洞近1000年石笋纹层年代学与同位素气候重建[D]. 南京:南京师范大学,2011.

Zhao Kan. Annually-Counting chronology and the isotopic climate reconstruction over the past millennia from stalagmites in Dongge cave[D]. Nanjing: Nanjing Normal University, 2011.