[1] Huang J P, Yu H P, Dai A G, et al. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 2017, 7(6): 417-422.
[2] 李明启,靳鹤龄,张洪,等. 浑善达克沙地磁化率和有机质揭示的全新世气候变化[J]. 沉积学报,2005,23(4):683-689.

Li Mingqi, Jin Heling, Zhang Hong, et al. Climate change revealed by magnetic susceptibility and organic matter during the Holocene in Hunshandak Desert[J]. Acta Sedimentologica Sinica, 2005, 23(4): 683-689.
[3] Ming G D, Zhou W J, Wang H, et al. Moisture variations in lacustrine-eolian sequence from the Hunshandake sandy land associated with the East Asian Summer Monsoon changes since the Late Pleistocene[J]. Quaternary Science Reviews, 2020, 233: 106210.
[4] Zhou Y W, Han Z Y, Li X S, et al. Sandy loess records of precipitation changes and monsoon migrations in the Hunshandake sandy land since the Last Glacial Maximum[J]. Paleoceanography and Paleoclimatology, 2018, 33(9): 945-957.
[5] Goldsmith Y, Broecker W S, Xu H, et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1817-1821.
[6] Xiao J L, Si B, Zhai D Y, et al. Hydrology of Dali lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability[J]. Journal of Paleolimnology, 2008, 40(1): 519-528.
[7] 姜雅娟,王维,马玉贞,等. 内蒙古鄂尔多斯高原泊江海子全新世气候变化初步研究[J]. 第四纪研究,2014,34(3):654-665.

Jiang Yajuan, Wang Wei, Ma Yuzhen, et al. A preliminary study on Holocene climate change of Ordos Plateau, as inferred by sedimentary record from Bojianghaizi Lake of Inner Mongolia, China[J]. Quaternary Sciences, 2014, 34(3): 654-665.
[8] Fan J W, Xiao J L, Wen R L, et al. Carbon and nitrogen signatures of sedimentary organic matter from Dali Lake in Inner Mongolia: Implications for Holocene hydrological and ecological variations in the East Asian summer monsoon margin[J]. Quaternary International, 2017, 452: 65-78.
[9] 周亚利,鹿化煜,张家富,等. 高精度光释光测年揭示的晚第四纪毛乌素和浑善达克沙地沙丘的固定与活化过程[J]. 中国沙漠,2005,25(3):342-350.

Zhou Yali, Lu Huayu, Zhang Jiafu, et al. Active and inactive phases of sand-dune in Mu Us and Otindag sandlands during Late Quaternary suggested by OSL Dating[J]. Journal of Desert Research, 2005, 25(3): 342-350.
[10] 靳鹤龄,苏志珠,孙良英,等. 浑善达克沙地全新世气候变化[J]. 科学通报,2004,49(15):1532-1536.

Jin Heling, Su Zhizhu, Sun Liangying, et al. Holocene climatic change in Hunshandake desert[J]. Chinese Science Bulletin, 2004, 49(15): 1532-1536.
[11] 刘瑾,王永,姚培毅,等. 末次冰消期以来内蒙古东部气候变化:基于风成砂—古土壤序列的地球化学记录[J]. 中国地质,2015,42(4):1103-1114.

Liu Jin, Wang Yong, Yao Peiyi, et al. A study of paleoclimate changes in east Inner Mongolia since the Last deglaciation on the basis of Aeolian sand-paleosoil series geochemical records[J]. Geology in China, 2015, 42(4): 1103-1114.
[12] 李森,孙武,李孝泽,等. 浑善达克沙地全新世沉积特征与环境演变[J]. 中国沙漠,1995,15(4):323-331.

Li Sen, Sun Wu, Li Xiaoze, et al. Sedimentary characteristics and environmental evolution of Otindag sandy land in Holocene[J]. Journal of Desert Research, 1995, 15(4): 323-331.
[13] 周亚利,鹿化煜, Mason J A,等. 浑善达克沙地的光释光年代序列与全新世气候变化[J]. 中国科学:地球科学,2008,38(4):452-462.

Zhou Yali, Lu Huayu, Mason J A, et al. Optically stimulated luminescence dating of Aeolian sand in the Otindag dune field and Holocene climate change[J]. Science China Earth Sciences, 2008, 38(4): 452-462.
[14] Lancaster N, Yang X P, Thomas D. Spatial and temporal complexity in Quaternary desert datasets: Implications for interpreting past dryland dynamics and understanding potential future changes[J]. Quaternary Science Reviews, 2013, 78: 301-302.
[15] Zhang Z S. Research resource review: Climate change in deserts: Past, present and future[J]. Progress in Physical Geography: Earth and Environment, 2016, 40(1): 181-183.
[16] 凌智永,李志忠,罗磊,等. 关于沙漠环境演变几种研究指标的探讨[J]. 云南地理环境研究,2009,21(2):86-91.

Ling Zhiyong, Li Zhizhong, Luo Lei, et al. The discussion about the several research indicators of the desert environment evolution[J]. Yunnan Geographic Environment Research, 2009, 21(2): 86-91.
[17] Song Y G, Lai Z P, Li Y, et al. Comparison between luminescence and radiocarbon dating of Late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015, 30: 405-410.
[18] Stokes S, Thomas D S G, Washington R. Multiple episodes of aridity in southern Africa since the last interglacial Period[J]. Nature, 1997, 388(6638): 154-158.
[19] Lancaster N, Kocurek G, Singhvi A, et al. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania[J]. Geology, 2002, 30(11): 991-994.
[20] Moska P, Murray A S, Bluszcz A. Luminescence properties of single grain quartz to determine the history of a sample from the Sahara Desert[J]. Quaternary Geochronology, 2010, 5(2/3): 96-101.
[21] Li G Q, Li F L, Jin M, et al. Late Quaternary lake evolution in the Gaxun Nur Basin, central Gobi Desert, China, based on quartz OSL and K-feldspar pIRIR dating of paleoshorelines[J]. Journal of Quaternary Science, 2017, 32(3): 347-361.
[22] 春喜,陈发虎,范育新,等. 乌兰布和沙漠腹地古湖存在的沙嘴证据及环境意义[J]. 地理学报,2009,64(3):339-348.

Xi Chun, Chen Fahu, Fan Yuxin, et al. Evidence of palaeolake existence in Ulan Buh desert and its environmental evolution[J]. Acta Geographica Sinica, 2009, 64(3): 339-348.
[23] Richter D, Krbetschek M. A new thermoluminescence dating technique for heated flint[J]. Archaeometry, 2006, 48(4): 695-705.
[24] Yang X, Zhu B, Wang X, et al. Late Quaternary environmental changes and organic carbon density in the Hunshandake sandy land, eastern Inner Mongolia, China[J]. Global and Planetary Change, 2008, 61(1/2): 70-78.
[25] 周亚利,鹿化煜,张小艳,等. 末次盛冰期和全新世大暖期浑善达克沙地边界的变化[J]. 第四纪研究,2013,33(2):228-242.

Zhou Yali, Lu Huayu, Zhang Xiaoyan, et al. Changes of the border of Otindag sand field (northern China) during the Last Glacial Maximum and Holocene Optimum[J]. Quaternary Sciences, 2013, 33(2): 228-242.
[26] 张洪,靳鹤龄,苏志珠,等. 全新世浑善达克沙地粒度旋回及其反映的气候变化[J]. 中国沙漠,2005,25(1):1-7.

Zhang Hong, Jin Heling, Su Zhizhu, et al. Climate changes revealed by grain-size cycles of Holocene in Hunshandake desert[J]. Journal of Desert Research, 2005, 25(1): 1-7.
[27] Gong Z J, Li S H, Sun J M, et al. Environmental changes in Hunshandake (Otindag) sandy land revealed by optical dating and multi-proxy study of dune sands[J]. Journal of Asian Earth Sciences, 2013, 76: 30-36.
[28] 黄世鑫,春喜,梁文军,等. 浑善达克沙地早全新世气候变化[J]. 干旱区资源与环境,2018,32(8):114-121.

Huang Shixin, Xi Chun, Liang Wenjun, et al. Climate change in Otindag sandy land during the Early Holocene[J]. Journal of Arid Land Resources and Environment, 2018, 32(8): 114-121.
[29] 蒋凯. 13万年以来浑善达克沙地南缘黄土—古土壤序列的环境磁学和地球化学研究[D]. 北京:中国地质科学院,2018.

Jiang Kai. Environmental magnetic and geochemical characteristics of a Late Pleistocene loess-paleosol sequence in the southern Hunshandake sandy land[D]. Beijing: Chinese Academy of Geological Sciences, 2018.
[30] 米小建,周亚利. 光释光测年及发展[J]. 湛江师范学院学报,2012,33(6):66-70.

Mi Xiaojian, Zhou Yali. Optical dating method and its development[J]. Journal of Zhanjiang Normal University, 2012, 33(6): 66-70.
[31] Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2/3): 497-500.
[32] 孙晓巍. 浑善达克沙地中更新世以来的光释光年代学研究[D]. 西安:陕西师范大学,2019.

Sun Xiaowei. Optically stimulated luminescence geochronology of Hunshandake sandy land since Middle Pleistocene[D]. Xi’an: Shaanxi Normal University, 2019.
[33] 鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学:地球科学,1998,28(3):278-283.

Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China Earth Sciences, 1998, 28(3): 278-283.
[34] Chen R C, Chen J, Ma J X, et al. Quartz grain surface microtextures of dam-break flood deposits from a landslide-dammed lake: A case study[J]. Sedimentary Geology, 2019, 383: 238-247.
[35] Murray A, Arnold L J, Buylaert J P, et al. Optically stimulated luminescence dating using quartz[J]. Nature Reviews Methods Primers, 2021, 1(1): 72.
[36] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73.
[37] Singarayer J S, Bailey R M. Component-resolved bleaching spectra of quartz optically stimulated luminescence: Preliminary results and implications for dating[J]. Radiation Measurements, 2004, 38(1): 111-118.
[38] 贾彬彬,周亚利,赵军. 新疆阿尔泰山东段冰碛物光释光测年研究[J]. 地理学报,2018,73(5):957-972.

Jia Binbin, Zhou Yali, Zhao Jun. Optically stimulated luminescence dating of moraines in east Altay Mountains, Xinjiang[J]. Acta Geographica Sinica, 2018, 73(5): 957-972.
[39] 张家富,周力平,姚书春,等. 湖泊沉积物的14C和光释光测年:以固城湖为例[J]. 第四纪研究,2007,27(4):522-528.

Zhang Jiafu, Zhou Liping, Yao Shuchun, et al. Radiocarbon and optical dating of lacustrine sediments: A case study in lake Gucheng[J]. Quaternary Sciences, 2007, 27(4): 522-528.
[40] Zhang J F, Zhou L P, Yue S Y. Dating fluvial sediments by optically stimulated luminescence: Selection of equivalent doses for age calculation[J]. Quaternary Science Reviews, 2003, 22(10/11/12/13): 1123-1129.
[41] Galbraith R F, Roberts R G, Laslett G M, et al. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models[J]. Archaeometry, 1999, 41(2): 339-364.
[42] Fan Y X, Li Z J, Cai Q S, et al. Dating of the Late Quaternary high lake levels in the Jilantai area, northwestern China, using optical luminescence of quartz and K-feldspar[J]. Journal of Asian Earth Sciences, 2022, 224: 105024.
[43] Durcan J A, King G E, Duller G A T. DRAC: Dose Rate and Age Calculator for trapped charge dating[J]. Quaternary Geochronology, 2015, 28: 54-61.
[44] 白敏,鲁瑞洁,丁之勇,等. 青海湖湖东沙地粒度端元分析及其指示意义[J]. 第四纪研究,2020,40(5):1203-1215.

Bai Min, Lu Ruijie, Ding Zhiyong, et al. End-member analysis of grain-size in the east of Qinghai Lake and its environmental implications[J]. Quaternary Sciences, 2020, 40(5): 1203-1215.
[45] 乌日查呼,春喜,张卫青,等. 浑善达克沙地沙粒特征及其沉积环境[J]. 西北林学院学报,2021,36(1):69-76.

Chahu Wuri, Xi Chun, Zhang Weiqing, et al. Grain size analysis and the sedimentary environment in Otindag sandy land[J]. Journal of Northwest Forestry University, 2021, 36(1): 69-76.
[46] 郭晓阳,王维,王国良,等. 季风边缘区湖泊表层沉积物粒度组分分布特征与影响因素[J]. 地理研究,2016,35(4):677-691.

Guo Xiaoyang, Wang Wei, Wang Guoliang, et al. Within-lake distributions of grain-size components and environmental implications based on the survey of lake surface sediment of Chinese monsoon marginal area[J]. Geographical Research, 2016, 35(4): 677-691.
[47] 田飞,王永,袁路朋,等. 浑善达克沙地碱湖表层沉积物的粒度、沉积有机质变化特征与指示意义[J]. 地学前缘,2022,29(2):317-326.

Tian Fei, Wang Yong, Yuan Lupeng, et al. Surface sediments of an alkaline lake in the Otindag sandy land: Grain size and sedimentary organic matter variations and their environmental significance[J]. Earth Science Frontiers, 2022, 29(2): 317-326.
[48] 谢又予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社,1984:40-53.

Xie Youyu. Atlas of quartz sand surface textural features of China micrographs[M]. Beijing: China Ocean Press, 1984: 40-53.
[49] 郭红锋,魏东岚,张威. 基于SEM的辽南红色风化壳石英颗粒化学成因特征分析[J]. 第四纪研究,2022,42(6):1613-1623.

Guo Hongfeng, Wei Donglan, Zhang Wei. Characterization of the chemical genesis of red weathered crust quartz grains in the southern Liaoning province based on SEM[J]. Quaternary Sciences, 2022, 42(6): 1613-1623.
[50] 江新胜,徐金沙,潘忠习. 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积学报,2003,21(3):416-422.

Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. Microscopic features on quartz sand grain surface in the Cretaceous Desert of Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 416-422.
[51] 渠洪杰,陈英富,卢晶,等. 浑善达克沙地最近一次大规模沙化的沉积记录及其光释光年龄[J]. 中国地质,2022,49(3):1003-1004.

Qu Hongjie, Chen Yingfu, Lu Jing, et al. Sedimentary record and OSL age of the latest large-scale desertification in Otindag sandy land[J]. Geology in China, 2022, 49(3): 1003-1004.
[52] 王绍武. 全新世北大西洋冷事件:年代学和气候影响[J]. 第四纪研究,2009,29(6):1146-1153.

Wang Shaowu. Holocene cold events in the North Atlantic: Chronology and climatic impact[J]. Quaternary Sciences, 2009, 29(6): 1146-1153.
[53] Loope D B, Swinehart J B, Mason J P. Dune-dammed paleovalleys of the Nebraska Sand Hills: Intrinsic versus climatic controls on the accumulation of lake and marsh sediments[J]. GSA Bulletin, 1995, 107(4): 396-406.
[54] Mason J A, Lu H, Zhou Y, et al. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength[J]. Geology, 2009, 37(10): 947-950.
[55] 杨利荣,岳乐平. 浑善达克沙地末次冰期晚期到全新世的环境转型[J]. 地球环境学报,2011,2(1):301-306.

Yang Lirong, Yue Leping. The environmental transformation from Late last glacial to Holocene of Otindag sandy land[J]. Journal of Earth Environment, 2011, 2(1): 301-306.
[56] 杨小平,梁鹏,张德国,等. 中国东部沙漠/沙地全新世地层序列及其古环境[J]. 中国科学:地球科学,2019,49(8):1293-1307.

Yang Xiaoping, Liang Peng, Zhang Deguo, et al. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications[J]. Science China Earth Sciences, 2019, 49(8): 1293-1307.
[57] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317.
[58] 冯晗,鹿化煜,弋双文,等. 末次盛冰期和全新世大暖期中国季风区西北缘沙漠空间格局重建初探[J]. 第四纪研究,2013,33(2):252-259.

Feng Han, Lu Huayu, Yi Shuangwen, et al. The border changes of the deserts/sand field in the East Asian Monsoon marginal region during the Last Glacial Maximum and Holocene Optimum[J]. Quaternary Sciences, 2013, 33(2): 252-259.
[59] 沈吉. 末次盛冰期以来中国湖泊时空演变及驱动机制研究综述:来自湖泊沉积的证据[J]. 科学通报,2012,57(34):3228-3242.

Shen Ji. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives[J]. Chinese Science Bulletin, 2012, 57(34): 3228-3242.
[60] 江合理,赵井东,殷秀峰,等. 阿尔泰山喀纳斯河流域末次冰期OSL年代学新证[J]. 冰川冻土,2012,34(2):304-310.

Jiang Heli, Zhao Jingdong, Yin Xiufeng, et al. New OSL chronology of the Last Glaciation in Kanas River Valley, Altay Mountains, China[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 304-310.
[61] Grootes P M, Stuiver M. GISP2 oxygen isotope data[DB/OL]. Pangaea, [1999-12-23]. https://doi.org/10.1594/Pangaea.56094. doi:  10.1594/Pangaea.56094
[62] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
[63] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[64] 吴江滢,汪永进,程海,等. 葫芦洞石笋记录的19.9 -17.1 ka BP东亚夏季风增强事件[J]. 中国科学:地球科学,2009,39(1):61-69.

Wu Jiangying, Wang Yongjin, Cheng Hai, et al. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite[J]. Science China Earth Sciences, 2009, 39(1): 61-69.
[65] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257-1266.
[66] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434): 218-220.
[67] von Grafenstein U, Erlenkeuser H, Brauer A, et al. A mid-European decadal isotope-climate record from 15, 500 to 5000 years B.P.[J]. Science, 1999, 284(5420): 1654-1657.
[68] Zhang H W, Cheng H, Spötl C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Reports, 2018, 8(1): 12344.
[69] 关友义,王永,姚培毅,等. 内蒙古克什克腾旗浩来呼热古湖泊全新世以来的环境演变[J]. 地质通报,2010,29(6):891-900.

Guan Youyi, Wang Yong, Yao Peiyi, et al. Environmental evolution since the Holocene in the Haolaihure ancient lake, Keshiketengqi, Inner Mongolia, China[J]. Geological Bulletin of China, 2010, 29(6): 891-900.
[70] 韩鹏,孙继敏. 浑善达克沙地的光释光测年研究[J]. 第四纪研究,2004,24(4):480.

Han Peng, Sun Jimin. Optical dating of dune sands in the Hunshandake desert[J]. Quaternary Sciences, 2004, 24(4): 480.
[71] Gao F Y, Jia J, Xia D S, et al. Asynchronous Holocene climate optimum across mid-latitude Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518: 206-214.
[72] Liang P, Yang X P. Landscape spatial patterns in the Maowusu (Mu Us) sandy land, northern China and their impact factors[J]. Catena, 2016, 145: 321-333.
[73] Wang H P, Chen J H, Zhang X J, et al. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian summer monsoon: Evidence for a mid-Holocene maximum[J]. Quaternary International, 2014, 334-335: 155-164.
[74] Yang L H, Wang T, Zhou J, et al. OSL chronology and possible forcing mechanisms of dune evolution in the Horqin dunefield in northern China since the Last Glacial Maximum[J]. Quaternary Research, 2012, 78(2): 185-196.
[75] Guo L C, Xiong S F, Ding Z L, et al. Role of the mid-Holocene environmental transition in the decline of Late Neolithic cultures in the deserts of NE China[J]. Quaternary Science Reviews, 2018, 190: 98-113.
[76] 王苏民,吴瑞金,蒋新禾. 内蒙古岱海末次冰期以来的环境变迁与古气候[J]. 第四纪研究,1990,10(3):223-232.

Wang Sumin, Wu Ruijin, Jiang Xinhe. Environment evolution and paleoclimate of Daihai lake, Inner Mongolia since the Last Glaciation[J]. Quaternary Sciences, 1990, 10(3): 223-232.
[77] 李华章,刘清泗,汪家兴. 内蒙古高原黄旗海、岱海全新世湖泊演变研究[J]. 湖泊科学,1992,4(1):31-39.

Li Huazhang, Liu Qingsi, Wang Jiaxing. Study of evolution of Huangqihai and Daihai lakes in Holocene in Inner Mongolia Plateau[J]. Journal of Lake Sciences, 1992, 4(1): 31-39.
[78] Wu H N, Ma Y Z, Feng Z D, et al. A high resolution record of vegetation and environmental variation through the last~ 25,000 years in the western part of the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(1/2): 191-199.
[79] Wu W X, Liu D S. 5500 A BP climatic event and its implications for the emergence of civilizations in Egypt and Mesopotamia and Neolithic cultural development in China[J]. Earth Science Frontiers, 2002, 9(1): 155-162.
[80] 曹建廷,沈吉,王苏民. 内蒙古岱海气候环境演变的沉积记录[J]. 地理学与国土研究,1999,15(3):82-86.

Cao Jianyan, Shen Ji, Wang Sumin. Sedimentary records of climate and environmental evolution in Daihai, Inner Mongolia[J]. Geography and Territorial Research, 1999, 15(3): 82-86.
[81] Broecker W S. Was the medieval warm Period global?[J]. Science, 2001, 291(5508): 1497-1499.