[1] Cawood P A, Nemchin A A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, western Australia[J]. Sedimentary Geology, 2000, 134(3/4): 209-234.
[2] Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[3] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
[4] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[5] Dingle R V, Lavelle M. Late Cretaceous-Cenozoic climatic variations of the northern Antarctic Peninsula: New geochemical evidence and review[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 141(3/4): 215-232.
[6] 侯明才,曹海洋,李慧勇,等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业,2019,39(1):33-44.

Hou Mingcai, Cao Haiyang, Li Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33-44.
[7] 薛永安,李慧勇,许鹏,等. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现[J]. 中国海上油气,2021,33(1):13-22.

Xue Yong'an, Li Huiyong, Xu Peng, et al. Recognition of oil and gas accumulation of Mesozoic covered buried hills in Bohai Sea area and the discovery of BZ 13-2 oilfield[J]. China Offshore Oil and Gas, 2021, 33(1): 13-22.
[8] Zhao G C, Wilde S A, Guo J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4): 266-276.
[9] Deng J, Wang C M, Bagas L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272.
[10] Ye T, Chen A Q, Niu C M, et al. Structural, petrophysical and lithological characterization of crystalline bedrock buried-hill reservoirs: A case study of the southern Jinzhou oilfield in offshore Bohai Bay Basin, North China[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107950.
[11] Zhao G C, He Y H, Sun M. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana Research, 2009, 16(2): 170-181.
[12] Zhao G C, Zhai M G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
[13] 中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京:科学出版社,1985.

Laboratory of Marine Geology, Institute of Oceanology, Chinese Academy of Sciences. Bohai geology[M]. Beijing: Science Press, 1985.
[14] 漆家福,陈发景. 辽东湾—下辽河裂陷盆地的构造样式[J]. 石油与天然气地质,1992,13(3):272-283.

Qi Jiafu, Chen Fajing. Structural style in Liaodongwan-Xialiaohe Basin[J]. Oil & Gas Geology, 1992, 13(3): 272-283.
[15] 戴朝成,郑荣才,文华国,等. 辽东湾盆地沙河街组湖相白云岩成因研究[J]. 成都理工大学学报(自然科学版),2008,35(2):187-193.

Dai Chaocheng, Zheng Rongcai, Wen Huaguo, et al. Origin of lacustrine dolomite in the Paleogene Shahejie Formation of Liaodongwan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(2): 187-193.
[16] 刘磊,陈洪德,徐长贵,等. 辽东湾古近系震积岩特征及其时空分布规律研究[J]. 沉积学报,2015,33(5):919-931.

Liu Lei, Chen Hongde, Xu Changgui, et al. Study on seismite features and its time-space distribution law of Paleogene in Liaodong Bay Depression[J]. Acta Sedimentologica Sinica, 2015, 33(5): 919-931.
[17] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[18] Ludwig K R. ISOPLOT 3.0: A Geochronological toolkit for Microsoft Excel[R]. Berkeley Geochronology Center Special Publication, Berkeley: Berkeley Geochronology Center, 2003.
[19] McLennan S M, Hemming S, McDaniel, D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Geological Society of America, 1993.
[20] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[21] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
[22] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[23] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
[24] 吴和源,赵宗举,汪建国,等. 华北克拉通北缘寒武系层序地层划分[J]. 吉林大学学报(地球科学版),2018,48(6):1609-1624.

Wu Heyuan, Zhao Zongju, Wang Jianguo, et al. Cambrian sequence stratigraphic framework in northern margin of North China Craton[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6): 1609-1624.
[25] 朱茂炎,孙智新,杨爱华,等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3):223-249.

Zhu Maoyan, Sun Zhixin, Yang Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 223-249.
[26] 万渝生,张巧大,宋天锐. 北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定[J]. 科学通报,2003,48(18):1970-1975.

Wan Yusheng, Zhang Qiaoda, Song Tianrui. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton[J]. Chinese Science Bulletin, 2003, 48(18): 1970-1975.
[27] 胡波,翟明国,彭澎,等. 华北克拉通古元古代末—新元古代地质事件:来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据[J]. 岩石学报,2013,29(7):2508-2536.

Hu Bo, Zhai Mingguo, Peng Peng, et al. Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton: Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in western Hills of Beijing[J]. Acta Petrologica Sinica, 2013, 29(7): 2508-2536.
[28] 任荣,韩宝福,张志诚,等. 北京昌平地区基底片麻岩和中—新元古代盖层锆石U-Pb年龄和Hf同位素研究及其地质意义[J]. 岩石学报,2011,27(6):1721-1745.

Ren Rong, Han Baofu, Zhang Zhicheng, et al. Zircon U-Pb and Hf isotopic studies of basement gneiss and overlying Meso-Neoproterozoic sedimentary rocks from the Changping area, Beijing, and their geological implications[J]. Acta Petrologica Sinica, 2011, 27(6): 1721-1745.
[29] Wan Y S, Liu D Y, Wang W, et al. Provenance of Meso- to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry[J]. Gondwana Research, 2011, 20(1): 219-242.
[30] 王振涛,沈阳,王训练,等. 河北怀来龙凤山青白口系长龙山组碎屑锆石LA-ICP-MS U-Pb年龄及其构造古地理意义[J]. 地质学报,2017,91(8):1760-1775.

Wang Zhentao, Shen Yang, Wang Xunlian, et al. Detrital zircon LA-ICP-MS U-Pb dating of the Changlongshan Formation of Qingbaikou System in Huailai county, Hebei province and its tectonic-paleogeographic significance[J]. Acta Geologica Sinica, 2017, 91(8): 1760-1775.
[31] Fu J H, Liu S W, Zhang B, et al. A Neoarchean K-rich granitoid belt in the northern North China Craton[J]. Precambrian Research, 2019, 328: 193-216.
[32] Guo R R, Liu S W, Gong E P, et al. Arc-generated metavolcanic rocks in the Anshan–Benxi greenstone belt, North China Craton: Constraints from geochemistry and zircon U–Pb–Hf isotopic systematics[J]. Precambrian Research, 2017, 303: 228-250.
[33] Wang X P, Oh C W, Peng P, et al. Distribution pattern of age and geochemistry of 2.18-2.14 Ga I- and A-type granites and their implication for the tectonics of the Liao-Ji belt in the North China Craton[J]. Lithos, 2020, 364-365: 105518.
[34] Li Z, Wei C J, Zhang S W, et al. Neoarchean granitoid gneisses in eastern Hebei, North China Craton: Revisited[J]. Precambrian Research, 2019, 324: 62-85.
[35] Han C M, Xiao W J, Su B X, et al. Neoarchean Algoma-type banded iron formations from eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting[J]. Precambrian Research, 2014, 251: 212-231.
[36] 郭敬辉,翟明国. 华北克拉通桑干地区高压麻粒岩变质作用的Sm-Nd年代学[J]. 科学通报,2000,45(19):2055-2061.

Guo Jinghui, Zhai Mingguo. Sm-Nd age dating of high-pressure granulites and amphibolite from Sanggan area, North China Craton[J]. Chinese Science Bulletin, 2000, 45(19): 2055-2061.
[37] Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision[J]. Journal of Asian Earth Sciences, 2005, 24(5): 629-642.
[38] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[39] Liu Z F, Wang H, Hantoro W S, et al. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra)[J]. Chemical Geology, 2012, 291: 1-12.
[40] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
[41] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
[42] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[43] Cullers R L, Podkovyrov V N. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui Group, southeastern Russia[J]. Precambrian Research, 2002, 117(3/4): 157-183.
[44] Taylor S R. The continental crust its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Pub, 1985: 312.
[45] Shao L, Stattegger K, Garbe-Schoenberg C D. Sandstone petrology and geochemistry of the Turpan Basin (NW China): Implications for the tectonic evolution of a continental basin[J]. Journal of Sedimentary Research, 2001, 71(1): 37-49.
[46] Wronkiewicz D J, Condie K C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2401-2416.
[47] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[48] 第五春荣,孙勇,刘养杰,等. 秦皇岛柳江地区长龙山组石英砂岩物质源区组成:来自碎屑锆石U-Pb-Hf同位素的证据[J]. 岩石矿物学杂志,2011,30(1):1-12.

Chunrong Diwu, Sun Yong, Liu Yangjie, et al. The protolith nature of quartz sandstone from Changlongshan Formation in Liujiang area, Qinhuangdao city: Evidence of U-Pb and Hf-isotope from detrital zircons[J]. Acta Petrologica et Mineralogica, 2011, 30(1): 1-12.
[49] Zhai M G, Hu B, Zhao T P, et al. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review[J]. Tectonophysics, 2015, 662: 153-166.
[50] 翟明国. 华北克拉通构造演化[J]. 地质力学学报,2019,25(5):722-745.

Zhai Mingguo. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745.
[51] Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust[J]. Journal of the Geological Society, 2010, 167(2): 229-248.
[52] Wan Y S, Liu D Y, Song B, et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance[J]. Journal of Asian Earth Sciences, 2005, 24(5): 563-575.
[53] Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2660-2673.
[54] 肖玲玲,刘福来,张健. 华北中部造山带左权变质杂岩ca. 2.5 Ga和ca. 1.9 Ga变质年龄记录及其地质意义[J]. 岩石学报,2019,35(4):969-988.

Xiao Lingling, Liu Fulai, Zhang Jian. Records and its geological implication of metamorphic ages of ca. 2.5 Ga and ca. 1.9 Ga from the Zuoquan metamorphic complex in the Trans-North China Orogen[J]. Acta Petrologica Sinica, 2019, 35(4): 969-988.
[55] 第五春荣,刘祥,孙勇. 华北克拉通南缘太华杂岩组成及演化[J]. 岩石学报,2018,34(4):999-1018.

Chunrong Diwu, Liu Xiang, Sun Yong. The composition and evolution of the Taihua complex in the southern North China Craton[J]. Acta Petrologica Sinica, 2018, 34(4): 999-1018.
[56] 第五春荣. 华北克拉通南部太古宙大陆地壳的生长和演化[J]. 岩石学报,2021,37(2):317-340.

Chunrong Diwu. Crustal growth and evolution of Archean continental crust in the southern North China Craton[J]. Acta Petrologica Sinica, 2021, 37(2): 317-340.
[57] 王翔,马昌前,邓佳良. 华北克拉通东南缘BIF型铁矿变质火山岩夹层锆石U-Pb年龄及其对铁矿形成时限的制约[J]. 地质科学,2021,56(3):951-971.

Wang Xiang, Ma Changqian, Deng Jialiang. Zircon U‑Pb ages of metamorphic volcanic interlayer in the BIF type iron ore at the southeastern margin of the North China Craton and their constraints on the formation time of iron ore[J]. Chinese Journal of Geology, 2021, 56(3): 951-971.
[58] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123.
[59] Li S S, Santosh M, Cen K, et al. Neoarchean convergent margin tectonics associated with microblock amalgamation in the North China Craton: Evidence from the Yishui complex[J]. Gondwana Research, 2016, 38: 113-131.
[60] Zhao G C, Li S Z, Sun M, et al. Assembly, accretion, and break-up of the palaeo-Mesoproterozoic Columbia supercontinent: Record in the North China Craton revisited[J]. International Geology Review, 2011, 53(11/12): 1331-1356.
[61] Li S Z, Li X Y, Wang G Z, et al. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: Constraints from three cratons in China[J]. Earth-Science Reviews, 2019, 198: 102946.
[62] 肖玲玲,牛路伟,王国栋. 吕梁界河口群变质岩石的构造指示:来自地球化学和同位素年代学的证据[J]. 岩石学报,2021,37(4):1015-1043.

Xiao Lingling, Niu Luwei, Wang Guodong. Geochemistry, geochronology and its geological implication of metamorphic rocks of the Jiehekou Group in the Lüliang complex[J]. Acta Petrologica Sinica, 2021, 37(4): 1015-1043.
[63] 郭敏洁,钱加慧,尹常青,等. 华北克拉通中部带云中山石榴斜长角闪岩变质演化及其构造意义[J]. 地球科学,2021,46(11):3892-3909.

Guo Minjie, Qian Jiahui, Yin Changqing, et al. Metamorphic evolution and tectonic implications of garnet amphibolite from Yunzhongshan terrane in central North China Craton[J]. Earth Science, 2021, 46(11): 3892-3909.
[64] 相振群,陆松年,李怀坤,等. 华北克拉通中元古代岩浆事件群[J]. 地质调查与研究,2020,43(2):137-152.

Xiang Zhenqun, Lu Songnian, Li Huaikun, et al. Mesoproterozoic magmatic events in the North China Craton[J]. Geological Survey and Research, 2020, 43(2): 137-152.
[65] 康健丽,王惠初,任云伟,等. 内蒙古固阳地区白云常合山A型花岗岩:年代学、地球化学、Hf同位素研究及其对Columbia超大陆裂解的响应[J]. 岩石学报,2020,36(8):2431-2446.

Kang Jianli, Wang Huichu, Ren Yunwei, et al. The Baiyunchanghe A-type granites in Guyang area, Inner Mongolia: Age, geochemistry, Hf isotope and response to the breakup of Columbia supercontinent[J]. Acta Petrologica Sinica, 2020, 36(8): 2431-2446.
[66] 孙立新,张云,胡晓佳,等. 内蒙狼山北部古元古代变质花岗岩地球化学特征、锆石U-Pb年代学:哥伦比亚超大陆裂解事件的岩浆记录[J]. 岩石学报,2018,34(10):3116-3136.

Sun Lixin, Zhang Yun, Hu Xiaojia, et al. Geochemical characteristics and zircon U-Pb geochronology of Paleoproterozoic metamorphic granites from northern Langshan, Inner Mongolia: Magmatic response to the breakup of Columbia supercontinent[J]. Acta Petrologica Sinica, 2018, 34(10): 3116-3136.
[67] Pisarevsky S A, Elming S Å, Pesonen L J, et al. Mesoproterozoic paleogeography: Supercontinent and beyond[J]. Precambrian Research, 2014, 244: 207-225.
[68] Zhao G C, Sun M, Wilde S A, et al. Some key issues in reconstructions of Proterozoic supercontinents[J]. Journal of Asian Earth Sciences, 2006, 28(1): 3-19.
[69] 杨泽宇,李珊珊,何登洋,等. 华北克拉通北部密云地区古元古代基性侵入岩形成时代与岩石成因[J]. 世界地质,2021,40(4):772-792.

Yang Zeyu, Li Shanshan, He Dengyang, et al. Geochronology and petrogenesis of Paleoproterozoic mafic intrusive rocks in Miyun area of northern North China Craton[J]. Global Geology, 2021, 40(4): 772-792.