[1] Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208.
[2] Magaritz M, Kirschvink J L, Latham A J, et al. Precambrian/Cambrian boundary problem : Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco[J]. Geology, 1991, 19(8): 847-850.
[3] Zhu G Y, Chen F R, Wang M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
[4] 朱光有,杜德道,陈玮岩,等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报,2017,38(12):1335-1342,1370.

Zhu Guangyou, Du Dedao, Chen Weiyan, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 1335-1342, 1370.
[5] 朱光有,陈斐然,陈志勇,等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学,2016,27(1):8-21.

Zhu Guangyou, Chen Feiran, Chen Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21.
[6] 赵文智,胡素云,汪泽成,等. 中国元古界—寒武系油气地质条件与勘探地位[J]. 石油勘探与开发,2018,45(1):1-13.

Zhao Wenzhi, Hu Suyun, Wang Zecheng, et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13.
[7] 邹才能,翟光明,张光亚,等. 全球常规—非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13-25.

Zou Caineng, Zhai Guangming, Zhang Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
[8] Zhu G Y, Zhang Z Y, Zhou X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930, doi: 10.1016/j.earscirev.2019.102930.
[9] Zhu G Y, Milkov A V, Zhang Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China[J]. AAPG Bulletin, 2019, 103(7): 1703-1743.
[10] Li C, Jin C S, Planavsky N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45(8): 743-746.
[11] Wang D, Ling H F, Struck U, et al. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J]. Nature Communications, 2018, 9: 2575.
[12] Wille M, Nägler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature, 2008, 453(7196): 767-769.
[13] Steiner M, Li G X, Qian Y, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
[14] Jiang S Y, Pi D H, Heubeck C, et al. Early Cambrian ocean anoxia in South China[J]. Nature, 2009, 459(7248): E5-E6.
[15] Xu L G, Lehmann B, Mao J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black Shales of South China-A reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
[16] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (∼529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
[17] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
[18] Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
[19] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
[20] Blamey N J F, Brand U, Parnell J, et al. Paradigm shift in determining Neoproterozoic atmospheric oxygen[J]. Geology, 2016, 44(8): 651-654.
[21] Crowley T J, Berner R A. CO2 and climate change[J]. Science, 2001, 292(5518): 870-872.
[22] Shields G A. Earth system transition during the Tonian-Cambrian interval of biological innovation: Nutrients, climate, oxygen and the marine organic carbon capacitor[M]//Brasier A T, McIlroy D, McLoughlin N. Earth system evolution and early life: A celebration of the work of martin brasier. Geological Society, London, Special Publications, 2017.
[23] 刘忠宝,高波,张钰莹,等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.

Liu Zhongbao, Gao Bo, Zhang Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31.
[24] 崔楠,张烨,陆朝晖. 渝东北城口北相区寒武系页岩储集层特征研究[J]. 科学技术与工程,2017,17(9):120-127.

Cui Nan, Zhang Ye, Lu Zhaohui. Features of shale Reservoir of Cambrian System in Chengkou North face of northeastern Chongqing[J]. Science Technology and Engineering, 2017, 17(9): 120-127.
[25] 朱正杰,张斌臣,唐清敏,等. 城口地区早寒武世黑色岩系铂族元素地球化学特征与来源[J]. 矿物学报,2017,37(4):495-506.

Zhu Zhengjie, Zhang Binchen, Tang Qingmin, et al. Sources and geochemistry of Platinum Group Elements (PGE) in the Early Cambrian black rock series in Chengkou district, northern Dabashan, southwestern China[J]. Acta Mineralogica Sinica, 2017, 37(4): 495-506.
[26] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[M]//Lipin B R, McKay G A. Geochemistry and mineralogy of rare earth elements. Washington: Mineralogical Society of America, 1989.
[27] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
[28] Calvert S E, Pedersen T F. Geochemistry of Recent Oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
[29] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985: 312.
[30] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[31] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[32] McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. Journal of Geology, 1991, 99(1): 1-21.
[33] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
[34] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Boulder, Colorado: Geological Society of America, 1993: 21-40.
[35] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[36] Condie K C, Wronkiewicz D J. The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution[J]. Earth and Planetary Science Letters, 1990, 97(3/4): 256-267.
[37] 谷志东,殷积峰,姜华,等. 四川盆地宣汉—开江古隆起的发现及意义[J]. 石油勘探与开发,2016,43(6):893-904.

Gu Zhidong, Yin Jifeng, Jiang Hua, et al. Discovery of Xuanhan-Kaijiang Paleouplift and its significance in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(6): 893-904.
[38] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[39] 齐靓,余文超,杜远生,等. 黔东南华纪铁丝坳期—大塘坡期古气候的演变:来自CIA的证据[J]. 地质科技情报,2015,34(6):47-57.

Qi Liang, Yu Wenchao, Du Yuansheng, et al. Paleoclimate evolution of the Cryogenian Tiesi’ao Formation – Datangpo Formation in eastern Guizhou province: Evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6): 47-57.
[40] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[41] Bock B, McLennan S M, Hanson G N. Geochemistry and provenance of the Middle Ordovician Austin Glen member (Normanskill Formation) and the Taconian Orogeny in New England[J]. Sedimentology, 1998, 45(4): 635-655.
[42] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[43] 赵元龙,Steiner M,杨瑞东,等. 贵州遵义下寒武统牛蹄塘组早期后生生物群的发现及重要意义[J]. 古生物学报,1999,38(增刊1):132-144.

Zhao Yuanlong, Steiner M, Yang Ruidong, et al. Discovery and significance of the early metazoan biotas from the Lower Cambrian Niutitang formation Zunyi, Guizhou, China[J]. Acta Palaeontologica Sinica, 1999, 38(Suppl. 1): 132-144.
[44] Murphy A E, Sageman B B, Hollander D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3): 280-291.