[1] Ma Q F, Feng Q L, Caridroit M, et al. Integrated radiolarian and conodont biostratigraphy of the Middle Permian Gufeng Formation (South China)[J]. Comptes Rendus Palevol, 2016, 15(5): 453-459.
[2] Wu Q, Ramezani J, Zhang H, et al. Calibrating the Guadalupian series (Middle Permian) of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 361-372.
[3] Wu Q, Ramezani J, Zhang H, et al. High-precision U-Pb zircon age constraints on the Guadalupian in West Texas, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548: 109668.
[4] 盛金章,王玉净. 南京龙潭孤峰组的放射虫化石[J]. 古生物学报,1985,24(2):171-180.

Sheng Jinzhang, Wang Yujing. Fossil radiolaria from Kufeng Formation at Longtan, Nanjing[J]. Acta Palaeontologica Sinica, 1985, 24(2): 171-180.
[5] 王汝建. 南京湖山地区孤峰组硅质岩中的放射虫化石[J]. 微体古生物学报,1993,10(4):459-468.

Wang Rujian. Fossil radiolarians from the Kufeng Formation, Hushan area, Nanjing[J]. Acta Micropalaeontologica Sinica, 1993, 10(4): 459-468.
[6] 王玉净,齐敦伦. 苏皖南部孤峰组放射虫动物群[J]. 微体古生物学报,1995,12(4):374-387.

Wang Yujing, Qi Dunlun. Radiolarian fauna of the Kuhfeng Formation in southern part of Jiangsu and Anhui provinces[J]. Acta Micropalaeontologica Sinica, 1995, 12(4): 374-387.
[7] 金玉玕,胡世忠. 安徽南部及宁镇山脉孤峰组的腕足化石[J]. 古生物学报,1978,17(2):101-127.

Jin Yugan, Hu Shizhong. Brachiopods of the Kuhfeng Formation in south Anhui and Nanking hills[J]. Acta Palaeontologica Sinica, 1978, 17(2): 101-127.
[8] 王汝建,沈高平, Sashida K. 苏皖地区孤峰组放射虫动物群及其古环境意义[J]. 同济大学学报,1997,25(5):559-564.

Wang Rujian, Shen Gaoping, Sashida K. Studies on radiolarian fauna from Gufeng Formation in Anhui and Jiangsu provinces, east China and its paleoenvironmental significance[J]. Journal of Tongji University, 1997, 25(5): 559-564.
[9] 刘宝珺,朱同兴. 安徽中南部下二叠统栖霞组和孤峰组沉积环境及成岩历史[J]. 成都地质学院学报,1990,17(1):5-12.

Liu Baojun, Zhu Tongxing. Sedimentary environments and diagenetic history of Qixia and Gufeng Formations, Lower Permian in central and southern Anhui, SE China[J]. Journal of Chengdu College of Geology, 1990, 17(1): 5-12.
[10] 朱同兴. 安徽南部下二叠统结核状硅质岩和层状硅质岩的沉积学特征及其成因探讨[J]. 岩相古地理,1989(5):1-8.

Zhu Tongxing. Sedimentological features and the genesis of Lower Permian nodular and thin-bedded siliceous rocks in southern Anhui[J]. Sedimentary Geology and Tethyan Geology, 1989(5): 1-8.
[11] 夏邦栋,钟立荣,方中,等. 下扬子区早三叠世孤峰组层状硅质岩成因[J]. 地质学报,1995,69(2):125-137.

Xia Bangdong, Zhong Lirong, Fang Zhong, et al. The origin of cherts of the Early Permian Gufeng Formation in the Lower Yangtze area, eastern China[J]. Acta Geologica Sinica, 1995, 69(2): 125-137.
[12] 杨玉卿,冯增昭. 华南下二叠统层状硅岩的形成及意义[J]. 岩石学报,1997,13(1):111-120.

Yang Yuqing, Feng Zengzhao. Formation and significance of the bedded siliceous rocks of the Lower Permian in South China[J]. Acta Petrologica Sinica, 1997, 13(1): 111-120.
[13] 杨水源,姚静. 安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J]. 高校地质学报,2008,14(1):39-48.

Yang Shuiyuan, Yao Jing. Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui province[J]. Geological Journal of China Universities, 2008, 14(1): 39-48.
[14] 李红中,周永章,杨志军,等. 钦-杭结合带硅质岩的分布特征及其地质意义[J]. 地学前缘,2015,22(2):108-117.

Li Hongzhong, Zhou Yongzhang, Yang Zhijun, et al. A study of the distribution characteristics of siliceous rocks in Qinzhou (Bay)-Hangzhou (Bay) joint belt and its geological significances[J]. Earth Science Frontiers, 2015, 22(2): 108-117.
[15] 颜佳新,赵坤. 二叠—三叠纪东特提斯地区古地理、古气候和古海洋演化与地球表层多圈层事件耦合[J]. 中国科学(D辑):地球科学,2002,32(9):751-759.

Yan Jiaxin, Zhao Kun. The coupling of paleogeography, paleoclimate, and paleooceanic evolution with multiple layers of the Earth's surface layer in the Permian-Triassic east tethys region[J]. Science China (Seri. D): Earth Sciences, 2002, 32(9): 751-759.
[16] Zhang B L, Yao S P, Wignall P B, et al. Widespread coastal upwelling along the eastern paleo-tethys margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2018, 97: 113-126.
[17] 何卫红,吴顺宝,张克信,等. 下扬子区孤峰组放射虫化石带划分及环境分析[J]. 江苏地质,1999,23(1):17-23.

He Weihong, Wu Shunbao, Zhang Kexin, et al. Classification of radiolarian fossil zones and environmental analysis of Gufeng Formation in Lower Yangtze region[J]. Jiangsu Geology, 1999, 23(1): 17-23.
[18] Wei H Y, Tang Z W, Yan D T, et al. Guadalupian (Middle Permian) ocean redox evolution in South China and its implications for mass extinction[J]. Chemical Geology, 2019, 530: 119318.
[19] 耿梓傲,韦恒叶. 下扬子巢湖地区中二叠统孤峰组富有机质硅质岩有机地球化学特征[J]. 高校地质学报,2019,25(6):823-837.

Geng Zi’ao, Wei Hengye. Organic geochemistry of organic-rich Cherts in the Middle Permian Gufeng Formation in Chaohu, Lower Yangtze area[J]. Geological Journal of China Universities, 2019, 25(6): 823-837.
[20] 石刚,李建青,廖圣兵,等. 安徽宣城地区皖油地1井钻获二叠系页岩气[J]. 中国地质,2021,48(2):669-670.

Shi Gang, Li Jianqing, Liao Shengbing, et al. Discovery of Permian shale gas in the Wanyoudi-1 well of Xuancheng, Anhui province[J]. Geology in China, 2021, 48(2): 669-670.
[21] Ge L K, Xie J C, Li Q Z, et al. Geochronology and geochemistry of Middle Permian tuff in Chaohu region, China: Implications for their origin and geological significance[J]. Solid Earth Sciences, 2021, 6(4): 354-366.
[22] Zhang B L, Yao S P, Ma A L, et al. New geochemical constraints on the development of active continental margin in southeast China during the Middle Permian and its tectonic implications[J]. Gondwana Research, 2022, 103: 458-472.
[23] 姚柏平,陆红,郭念发. 论下扬子地区多期构造格局叠加及其油气地质意义[J]. 石油勘探与开发,1999,26(4):10-13.

Yao Baiping, Lu Hong, Guo Nianfa. The multi-stage structure frame of Lower Yangtze Basin evolution and its significance in petroleum geology[J]. Petroleum Exploration and Development, 1999, 26(4): 10-13.
[24] 李双应,孟庆任,万秋,等. 长江中下游地区二叠纪碳酸盐斜坡沉积及其成矿意义[J]. 岩石学报,2008,24(8):1733-1744.

Li Shuangying, Meng Qingren, Wan Qiu, et al. Deposition of carbonate slope and ore-forming in Permian strata in the middle-lower reaches of the Yangtze River, East China[J]. Acta Petrologica Sinica, 2008, 24(8): 1733-1744.
[25] Zhang B L, Yao S P, Wignall P B, et al. New timing and geochemical constraints on the Capitanian (Middle Permian) extinction and environmental changes in deep-water settings: Evidence from the Lower Yangtze region of South China[J]. Journal of the Geological Society, 2019, 176(3): 588-608.
[26] Wei H Y, Geng Z A, Zhang X. Guadalupian (Middle Permian) δ13Corg changes in the Lower Yangtze, South China[J]. Acta Geochimica, 2020, 39(6): 988-1001.
[27] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
[28] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
[29] Boström K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447.
[30] de Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1943-1959.
[31] Michard A, Albarède F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N)[J]. Nature, 1983, 303(5920): 795-797.
[32] Kimata M. The crystal structure of non-stoichiometric Eu-anorthite: An explanation of the Eu-positive anomaly[J]. Minera-logical Magazine, 1988, 52(365): 257-265.
[33] Michard A. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 745-750.
[34] Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895.
[35] Goldberg E D, Koide M, Schmitt R A, et al. Rare-earth distributions in the marine environment[J]. Journal of Geophysical Research, 1963, 68(14): 4209-4217.
[36] Turner D R, Whitfield M, Dickson A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 855-881.
[37] Baker R A. Trace inorganics in water[M]//Høgdahl O T, Melsom S, Bowen V T. Neutron activation analysis of lanthanide elements in sea water. Washington DC: Jenne E A, 1968: 308-325.
[38] Klinkhammer G, Elderfield H, Hudson A. Rare earth elements in seawater near hydrothermal vents[J]. Nature, 1983, 305(5931): 185-188.
[39] Holland H D. The chemistry of the atmosphere and oceans[M]. New York: Wiley, 1978.
[40] McLennan S M, Taylor S R, Kröner A. Geochemical evolution of Archean shales from South Africa I. The Swaziland and Pongola Supergroups[J]. Precambrian Research, 1983, 22(1/2): 93-124.
[41] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.