[1] |
Athy L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24. |
[2] |
Borst R L. Some effects of compaction and geological time on the pore parameters of argillaceous rocks[J]. Sedimentology, 1982, 29(2): 291-298. |
[3] |
柳广弟,张厚福. 石油地质学[M]. 北京:石油工业出版社,2009:266-273.
Liu Guangdi, Zhang Houfu. Petroleum geology[M]. Beijing: Petroleum Industry Press, 2009: 266-273. |
[4] |
刘震,武耀辉. 泥岩压实程度与热成熟度关系分析[J]. 地质论评,1997,43(3):290-296.
Liu Zhen, Wu Yaohui. Analysis on relation between compaction of mudstone and thermal maturity[J]. Geological Review, 1997, 43(3): 290-296. |
[5] |
Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. |
[6] |
Martineau D F. History of the Newark East field and the Barnett shale as a gas reservoir[J]. AAPG Bulletin, 2007, 91(4): 399-403. |
[7] |
Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of Nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. |
[8] |
Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. |
[9] |
邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报,2011,27(6):1857-1864.
Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. |
[10] |
Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
[11] |
Bowker K A. Barnett shale gas production, fort worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533. |
[12] |
郭旭升,胡东风,文治东,等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质,2014,41(3):893-901.
Guo Xusheng, Hu Dongfeng, Wen Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901. |
[13] |
郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36.
Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. |
[14] |
董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(增刊1):107-114.
Dong Dazhong, Zou Caineng, Yang Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(Supp.l): 107-114. |
[15] |
胡东风,张汉荣,倪楷,等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业,2014,34(6):17-23.
Hu Dongfeng, Zhang Hanrong, Ni Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. |
[16] |
金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.
Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. |
[17] |
何治亮,聂海宽,张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘,2016,23(2):8-17.
He Zhiliang, Haihuan Nei, Zhang Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17. |
[18] |
Hartmann, B H, Ramseyer, K, Matter, A. Diagenesis and pore-water evolution in Permian sandstones, Gharif Formation, Sultanate of Oman[J]. Journal of Sedimentary Research, 2000, 70(3): 533-544. |
[19] |
Aplin A C, Yang Y L, Hansen S. Assessment of β the compression coefficient of mudstones and its relationship with detailed lithology[J]. Marine and Petroleum Geology, 1995, 12(8): 955-963. |
[20] |
Aplin A C, Matenaar I F, McCarty D K, et al. Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones[J]. Clays and Clay Minerals, 2006, 54(4): 500-514. |
[21] |
Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744. |
[22] |
Slatt R M, O’Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. |
[23] |
Milliken, K L, Olson, Silica Diagenesis T., Evolution Porosity, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Mountains Rocky, U.S.A [J]. Journal of Sedimentary Research, 2017, 87(4): 366-387. |
[24] |
Schieber J. A role for organic petrology in integrated studies of mudrocks: Examples from Devonian black shales of the eastern US[J]. International Journal of Coal Geology, 2001, 47(3/4): 171-187. |
[25] |
Berner R A. Calcium carbonate concretions formed by the decomposition of organic matter[J]. Science, 1968, 159(3811): 195-197. |
[26] |
Berner R A. Sedimentary pyrite Formation: An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615. |
[27] |
Brock F, Parkes R J, Briggs D E G. Experimental pyrite Formation associated with decay of plant material[J]. Palaios, 2006, 21(5): 499-506. |
[28] |
Bernard S, Benzerara K, Beyssac O, et al. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5054-5068. |
[29] |
Krouse H R, Viau C A, Eliuk L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6172): 415-419. |
[30] |
Goldstein T P, Aizenshtat Z. Thermochemical sulfate reduction a review[J]. Journal of Thermal Analysis, 1994, 42(1): 241-290. |
[31] |
王玉净,张元动. 江苏仑山地区上奥陶统五峰组放射虫动物群及其地质意义[J]. 微体古生物学报,2011,28(3):251-260.
Wang Yujing, Zhang Yuandong. Radiolarian fauna of the Wufeng Formation (Upper Ordovician) in Lunshan area, Jiangsu and its geological significance[J]. Acta Micropalaeontologica Sinica, 2011, 28(3): 251-260. |
[32] |
卢龙飞,秦建中,申宝剑,等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘,2018,25(4):226-236.
Lu Longfei, Qin Jianzhong, Shen Baojian, et al. Biogenic silica evidence in siliceous shale of Wufeng-Longmachi Formation of Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. |
[33] |
陈红宇,卢龙飞,刘伟新,等. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质,2017,39(3):341-347.
Chen Hongyu, Lu Longfei, Liu Weixin, et al. Pore network changes in opaline siliceous shale during diagenesis[J]. Petroleum Geology & Experiment, 2017, 39(3): 341-347. |
[34] |
卢龙飞,秦建中,申宝剑,等. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质,2016,38(4):460-465,472.
Lu Longfei, Qin Jianzhong, Shen Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465, 472. |
[35] |
卢龙飞,刘伟新,俞凌杰,等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质,2020,42(3):363-370.
Lu Longfei, Liu Weixin, Yu Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. |
[36] |
Day-Stirrat R J, Aplin A C, Środoń J, et al. Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland[J]. Clays and Clay Minerals, 2008, 56(1): 100-111. |
[37] |
Ho N C, Peacor D R, Van Der Pluijm B A. Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition[J]. Clays and Clay Minerals, 1999, 47(4): 495-504. |
[38] |
Hill R J, Zhang E T, Katz B J, et al. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 501-521. |
[39] |
Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. |
[40] |
Bernard S, Wirth R, Schreiber A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103: 3-11. |
[41] |
Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16. |
[42] |
Ko L T, Loucks R G, Ruppel S C, et al. Origin and characterization of Eagle Ford pore networks in the South Texas Upper Cretaceous shelf[J]. AAPG Bulletin, 2017, 101(3): 387-418. |
[43] |
赵文智,李建忠,杨涛,等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.
Zhao Wenzhi, Li Jianzhong, Yang Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. |
[44] |
王飞宇,关晶,冯伟平. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发,2013,40(6):764-768.
Wang Feiyu, Guan Jing, Feng Weiping. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. |
[45] |
王玉满,李新景,王皓,等. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学,2020,31(2):151-162.
Wang Yuman, LI Xinjing, Wang Hao, et al. Prediction of organic matter carbonization zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze region[J]. Natural Gas Geoscience, 2020, 31(2): 151-162. |
[46] |
曹环宇,朱传庆,邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报,2016,59(3):1017-1029.
Cao Huanyu, Zhu Chuanqing, Qiu Nansheng. Maximum paleotemperature of main Paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics, 2016, 59(3): 1017-1029. |
[47] |
曹环宇,朱传庆,邱楠生. 川东地区下志留统龙马溪组热演化[J]. 地球科学与环境学报,2015,37(6):22-32.
Cao Huanyu, Zhu Chuanqing, Qiu Nansheng. Thermal evolution of Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Journal of Earth Sciences and Environment, 2015, 37(6): 22-32. |
[48] |
郭彤楼,刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学,2013,24(4):643-651.
Guo Tonglou, Liu Ruobing. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651. |
[49] |
刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘,2016,23(1):11-28.
Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. |
[50] |
王晔,邱楠生,仰云峰,等. 四川盆地五峰—龙马溪组页岩成熟度研究[J]. 地球科学,2019,44(3):953-971.
Wang Ye, Qiu Nansheng, Yang Yunfeng, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science, 2019, 44(3): 953-971. |
[51] |
Bernard S, Brown L, Wirth R, et al. FIB-SEM and TEM investigations of an organic-rich shale maturation series from the Lower Toarcian Posidonia Shale, Germany: Nanoscale pore system and fluid-rock interactions[M]//Camp W K, Diaz E, Wawak B. Electron microscopy of shale hydrocarbon reservoirs. Tulsa: American Association of Petroleum Geologists, 2013: 53-66. |
[52] |
Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
[53] |
Mathia E J, Bowen L, Thomas K M, et al. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75: 117-139. |
[54] |
Milliken K L, Curtis M E. Imaging pores in sedimentary rocks: Foundation of porosity prediction[J]. Marine and Petroleum Geology, 2016, 73: 590-608. |
[55] |
刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报,2015,33(4):817-827.
Liu Ruobing. Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the south-eastern part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827. |
[56] |
魏祥峰,李宇平,魏志红,等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质,2017,39(2):147-153.
Wei Xiangfeng, Li Yuping, Wei Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. |