[1] |
袁训来,庞科,唐卿,等. 复杂生物的起源和早期演化[J]. 科学通报,2023,68(213):169-187.
Yuan Xunlai, Pang Ke, Tang Qing, et al. The origin and early evolution of complex organism[J]. Chinese Science Bulletin, 2023, 68(213): 169-187. |
[2] |
Li Z H, Zhang M, Chen Z Q, et al. Early Cambrian oceanic oxygenation and evolution of early animals: A critical review from the South China Craton[J]. Global and Planetary Change, 2021, 204: 103561. |
[3] |
朱茂炎,赵方臣,殷宗军,等. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学,2019,49(10):1455-1490.
Zhu Maoyan, Zhao Fangchen, Yin Zongjun, et al. The Cambrian explosion: Advances and perspectives from China[J]. Science China: Earth Sciences, 2019, 49(10):1455-1490. |
[4] |
Shu D G, Isozaki Y, Zhang X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895. |
[5] |
Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137. |
[6] |
Dahl T W, Connelly J N, Li D, et al. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19352-19361. |
[7] |
Mills D B, Francis W R, Canfield D E. Animal origins and the Tonian Earth system[J]. Emerging Topics in Life Sciences, 2018, 2(2): 289-298. |
[8] |
Sperling E A, Frieder C A, Raman A V, et al. Oxygen, ecology, and the Cambrian radiation of animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13446-13451. |
[9] |
Li D D, Zhang X L, Hu D P, et al. Multiple S-isotopic constraints on paleo-redox and sulfate concentrations across the Ediacaran-Cambrian transition in South China[J]. Precambrian Research, 2020, 349: 105500. |
[10] |
Dahl T W, Connelly J N, Kouchinsky A, et al. Reorganisation of Earth’s biogeochemical cycles briefly oxygenated the oceans 520 Myr ago[J]. Geochemical Perspectives Letters, 2017, 3(2): 210-220. |
[11] |
Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376(6535): 53-56. |
[12] |
Li Y F, Zhang T W, Shen B J, et al. Carbon and sulfur isotope variations through the Upper Ordovician and Lower Silurian of South China linked to volcanism[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110285. |
[13] |
Li C, Zhang Z H, Jin C S, et al. Spatiotemporal evolution and causes of marine euxinia in the early Cambrian Nanhua Basin (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109676. |
[14] |
Chang H J, Chu X L, Feng L J, et al. Marine redox stratification on the earliest Cambrian (ca. 542-529 Ma) Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 75-85. |
[15] |
Cheng M, Li C, Zhou L, et al. Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: A case study of the lower Cambrian Niutitang shales, South China[J]. Geochimica et Cosmochimica Acta, 2016, 183: 79-93. |
[16] |
Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian (∼529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51. |
[17] |
Feng L J, Li C, Huang J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze Platform, South China[J]. Precambrian Research, 2014, 246: 123-133. |
[18] |
Liu Y, Magnall J M, Gleeson S A, et al. Spatio-temporal evolution of ocean redox and nitrogen cycling in the early Cambrian Yangtze ocean[J]. Chemical Geology, 2020, 554: 119803. |
[19] |
Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. |
[20] |
Poulton S W, Canfield D E. Ferruginous conditions: A dominant feature of the ocean through Earth's history[J]. Elements, 2011, 7(2): 107-112. |
[21] |
王丹,朱祥坤,凌洪飞. 氮的生物地球化学循环及氮同位素指标在古海洋环境研究中的应用[J]. 地质学报,2015,89(增刊1):74-76.
Wang Dan, Zhu Xiangkun, Ling Hongfei. Nitrogen biogeochemical cycling and application of nitrogen isotope proxy to the paleo-marine environment[J]. Acta Geological Sinica, 2015, 87(Suppl. 1):74-76. |
[22] |
Devol A H. Denitrification, anammox, and N2 production in marine sediments[J]. Annual Review of Marine Science, 2015, 7: 403-423. |
[23] |
Ader M, Thomazo C, Sansjofre P, et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives[J]. Chemical Geology, 2016, 429: 93-110. |
[24] |
Wu Y W, Tian H, Jia W L, et al. Nitrogen isotope evidence for stratified ocean redox structure during Late Ediacaran to Cambrian Age 3 in the Yangtze Block of South China[J]. Chemical Geology, 2022, 589: 120679. |
[25] |
Chen Y, Diamond C W, Stüeken E E, et al. Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze Block across the Ediacaran-Cambrian transition[J]. Geochimica et Cosmochimica Acta, 2019, 257: 243-265. |
[26] |
Xiang L, Schoepfer S D, Zhang H, et al. Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J]. Precambrian Research, 2018, 313: 68-77. |
[27] |
Wei G Y, Ling H F, Li D, et al. Marine redox evolution in the early Cambrian Yangtze shelf margin area: Evidence from trace elements, nitrogen and sulphur isotopes[J]. Geological Magazine, 2017, 154(6): 1344-1359. |
[28] |
Wang D, Struck U, Ling H F, et al. Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform, South China: Evidence from nitrogen and organic carbon isotopes[J]. Precambrian Research, 2015, 267: 209-226. |
[29] |
Hammarlund E U, Gaines R R, Prokopenko M G, et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang[J]. Earth and Planetary Science Letters, 2017, 475: 160-168. |
[30] |
Cremonese L, Shields-Zhou G, Struck U, et al. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section, South China[J]. Precambrian Research, 2013, 225: 148-165. |
[31] |
Wang H Z, Wang D, Wei G Y, et al. Increases in marine environmental heterogeneity during the early animal innovations: Evidence from nitrogen isotopes in South China[J]. Precambrian Research, 2022, 369: 106501. |
[32] |
Xu D T, Wang X Q, Shi X Y, et al. Nitrogen cycle perturbations linked to metazoan diversification during the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109392. |
[33] |
Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239. |
[34] |
Dalsgaard T, Thamdrup B, Farias L, et al. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific[J]. Limnology and Oceanography, 2012, 57(5): 1331-1346. |
[35] |
Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. |
[36] |
Gao P, Li S J, Lash G G, et al. Stratigraphic framework, redox history, and organic matter accumulation of an early Cambrian intraplatfrom basin on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2021, 130: 105095. |
[37] |
Yeasmin R, Chen D Z, Fu Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the early Cambrian (Age 2 through 3) in the mid-Upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386. |
[38] |
Charvet J. The Neoproterozoic–Early Paleozoic tectonic evolution of the South China Block: An overview[J]. Journal of Asian Earth Sciences, 2013, 74: 198-209. |
[39] |
Steiner M, Li G X, Qian Y, et al. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99. |
[40] |
Jiang G Q, Wang X Q, Shi X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze Platform[J]. Earth and Planetary Science Letters, 2012, 317-318: 96-110. |
[41] |
Wang N, Wen L, Li M J, et al. The origin of abnormally 13C-depleted organic carbon isotope signatures in the early Cambrian Yangtze Platform[J]. Marine and Petroleum Geology, 2021, 128: 105051. |
[42] |
Och L M, Cremonese L, Shields-Zhou G A, et al. Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition[J]. Sedimentology, 2016, 63(2): 378-410. |
[43] |
Wang J G, Chen D Z, Yan D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306-307: 129-138. |
[44] |
Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193. |
[45] |
Jin C S, Li C, Algeo T J, et al. Controls on organic matter accumulation on the early-Cambrian western Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020, 111: 75-87. |
[46] |
Och L M, Shields-Zhou G A, Poulton S W, et al. Redox changes in early Cambrian black shales at Xiaotan section, Yunnan pro-vince, South China[J]. Precambrian Research, 2013, 225: 166-189. |
[47] |
Compston W, Zhang Z C, Cooper J A, et al. Further SHRIMP geochronology on the early Cambrian of South China[J]. American Journal of Science, 2008, 308(4): 399-420. |
[48] |
Zhao L, Liu S G, Li G Q, et al. Sedimentary environment and enrichment of organic matter during the deposition of Qiongzhusi Formation in the upslope areas:A case study of W207 well in the Weiyuan area, Sichuan Basin, China[J]. Frontiers in Earth Science, 2022, 10: 867616. |
[49] |
Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 1986, 54(1/2): 149-155. |
[50] |
Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3/4): 209-221. |
[51] |
Zhang T, Li Y F, Fan T L, et al. Orbitally-paced climate change in the early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters, 2022, 583: 117420. |
[52] |
金承胜,李超,彭兴芳,等. 华南寒武纪早期海洋化学状态的时空波动[J]. 中国科学:地球科学,2014,44(5):851-863.
Jin Chengsheng, Li Chao, Peng Xingfang, et al. Spatiotemporal variability of ocean chemistry in the early Cambrian[J]. Science China: Earth Sciences, 2014, 44(5): 851-863. |
[53] |
Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. |
[54] |
Clarkson M O, Poulton S W, Guilbaud R, et al. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments[J]. Chemical Geology, 2014, 382: 111-122. |
[55] |
Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-220. |
[56] |
Hollander D J, Smith M A. Microbially mediated carbon cycling as a control on the δ13 C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2001, 65(23): 4321-4337. |
[57] |
Zhai L N, Wu C D, Ye Y T, et al. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran–Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 280-292. |
[58] |
Chang C, Hu W X, Wang X L, et al. Nitrogen isotope evidence for an oligotrophic shallow ocean during the Cambrian Stage 4[J]. Geochimica et Cosmochimica Acta, 2019, 257: 49-67. |
[59] |
Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): PA4203. |
[60] |
Ader M, Sansjofre P, Halverson G P, et al. Ocean redox structure across the Late Neoproterozoic oxygenation event: A nitrogen isotope perspective[J]. Earth and Planetary Science Letters, 2014, 396: 1-13. |
[61] |
Calvert S E. Beware intercepts: Interpreting compositional ratios in multi-component sediments and sedimentary rocks[J]. Organic Geochemistry, 2004, 35(8): 981-987. |
[62] |
Kenrick P, Crane P R. The origin and early evolution of plants on land[J]. Nature, 1997, 389(6646): 33-39. |
[63] |
Wang Z F, Chang C, Zhang X L, et al. Possible response of N2O emission to marine redox fluctuation during the Ediacaran-Cambrian transition in Nanhua Basin, South China[J]. Precambrian Research, 2021, 365: 106409. |
[64] |
Macko S A, Estep M L F, Engel M H, et al. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination[J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2143-2146. |
[65] |
Sigman D M, Karsh K L, Casciotti K L. Ocean process tracers: Nitrogen isotopes in the ocean[M]//Steele J H, Thorpe S A, Turekian K K. Encyclopedia of ocean sciences. 2nd ed. San Diego: Academic Press, 2009: 4138-4153. |
[66] |
Cremonese L, Shields-Zhou G A, Struck U, et al. Nitrogen and organic carbon isotope stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian transition in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 165-186. |
[67] |
Kikumoto R, Tahata M, Nishizawa M, et al. Nitrogen isotope chemostratigraphy of the Ediacaran and early Cambrian platform sequence at Three Gorges, South China[J]. Gondwana Research, 2014, 25(3): 1057-1069. |
[68] |
Wei G Y, Planavsky N J, Tarhan L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46(7): 587-590. |
[69] |
Guo Q J, Strauss H, Zhu M Y, et al. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran–Cambrian transition[J]. Precambrian Research, 2013, 225: 209-217. |
[70] |
He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals[J]. Nature Geoscience, 2019, 12(6): 468-474. |
[71] |
Liu Z X, Yan D T, Yuan D E, et al. Multiple controls on the organic matter accumulation in early Cambrian marine black shales, Middle Yangtze Block, South China[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 104454. |
[72] |
Chen L, Zhang B M, Chen X H, et al. Depositional environment and organic matter accumulation of the lower Cambrian Shuijingtuo Formation in the Middle Yangtze area, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109339. |
[73] |
Sweere T, van den Boorn S, Dickson A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245. |
[74] |
Wang D, Ling H F, Struck U, et al. Publisher correction: Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J]. Nature Communications, 2018, 9(1): 3395. |
[75] |
Zhu M, Zhuravlev A Y, Wood R A, et al. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform[J]. Geology, 2017, 45(5): 459-462. |