[1] Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1/2/3/4): 69-86.
[2] de Leo F C, Smith C R, Rowden A A, et al. Submarine canyons: Hotspots of benthic biomass and productivity in the deep sea[J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1695): 2783-2792.
[3] Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
[4] Deptuck M E, Sylvester Z. Submarine fans and their channels, levees, and lobes[M]//Micallef A, Krastel S, Savini A. Submarine geomorphology. Cham: Springer, 2018: 273-299.
[5] Shepard F P. Submarine canyons: Multiple causes and long-time persistence[J]. AAPG Bulletin, 1981, 65(6): 1062-1077.
[6] Nyberg B, Helland-Hansen W, Gawthorpe R L, et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J]. Sedimentary Geology, 2018, 373: 111-133.
[7] Pickering K, Coleman J, Cremer M, et al. A high sinuosity, laterally migrating submarine fan channel-levee-overbank: Results from DSDP Leg 96 on the Mississippi fan, gulf of Mexico[J]. Marine and Petroleum Geology, 1986, 3(1): 3-18.
[8] Menard H W. Deep-sea channels, topography, and sedimentation[J]. AAPG Bulletin, 1955, 39(2): 236-255.
[9] Mulder T, Zaragosi S, Garlan T, et al. Present deep-submarine canyons activity in the bay of Biscay (NE Atlantic)[J]. Marine Geology, 2012, 295-298: 113-127.
[10] Holeman J N. The sediment yield of major rivers of the world[J]. Water Resources Research, 1968, 4(4): 737-747.
[11] Masson D G, Kenyon N H, Weaver P P E. Slides, debris flows and turbidity currents[M]//Summerhayes C P, Thorpe S A. Oceanography: An illustrated guide. London: Manson Publishing, 1996: 136-151.
[12] Talling P J, Amy L A, Wynn R B. New insight into the evolution of large-volume turbidity currents: Comparison of turbidite shape and previous modelling results[J]. Sedimentology, 2007, 54(4): 737-769.
[13] Klaucke I, Hesse R, Ryan W B F. Flow parameters of turbidity currents in a low-sinuosity giant deep-sea channel[J]. Sedimentology, 1997, 44(6): 1093-1102.
[14] Meiburg E, Kneller B. Turbidity currents and their deposits[J]. Annual Review of Fluid Mechanics, 2010, 42: 135-156.
[15] Wells M G, Dorrell R M. Turbulence processes within turbidity currents[J]. Annual Review of Fluid Mechanics, 2021, 53(1): 59-83.
[16] Picot M, Marsset T, Droz L, et al. Monsoon control on channel avulsions in the Late Quaternary Congo fan[J]. Quaternary Science Reviews, 2019, 204: 149-171.
[17] Mayall M, Jones E, Casey M. Turbidite channel reservoirs-key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
[18] Deptuck M E, Sylvester Z, Pirmez C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major canyon, western Niger Delta slope[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 406-433.
[19] Piper D J W, Cochonat P, Morrison M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology, 1999, 46(1): 79-97.
[20] Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2): 58-67.
[21] Xu J P. Normalized velocity profiles of field-measured turbidity currents[J]. Geology, 2010, 38(6): 563-566.
[22] Xu J P, Noble M A, Rosenfeld L K. In-situ measurements of velocity structure within turbidity currents[J]. Geophysical Research Letters, 2004, 31(9): L09311.
[23] Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532: 116023.
[24] Sylvester Z, Pirmez C, Cantelli A. A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture[J]. Marine and Petroleum Geology, 2011, 28(3): 716-727.
[25] Covault J A, Sylvester Z, Hubbard S M, et al. The stratigraphic record of submarine-channel evolution[J]. The Sedimentary Record, 2016, 14(3): 4-11.
[26] de Leeuw J, Eggenhuisen J T, Cartigny M J B. Morphodynamics of submarine channel inception revealed by new experimental approach[J]. Nature Communications, 2016, 7(1): 10886.
[27] Baas J H, van Kesteren W, Postma G. Deposits of depletive high-density turbidity currents: A flume analogue of bed geometry, structure and texture[J]. Sedimentology, 2004, 51(5): 1053-1088.
[28] Baudin F, Stetten E, Schnyder J, et al. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan:A Rock-Eval survey[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 142: 75-90.
[29] Hage S, Cartigny M J B, Sumner E J, et al. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes[J]. Geophysical Research Letters, 2019, 46(20): 11310-11320.
[30] Prins M A, Postma G. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea[J]. Geology, 2000, 28(4): 375-378.
[31] Moernaut J, Daele M V, Heirman K, et al. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1607-1633.
[32] Burgess P M, Masiero I, Toby S C, et al. A big fan of signals? Exploring autogenic and allogenic process and product in a numerical stratigraphic forward model of submarine-fan development[J]. Journal of Sedimentary Research, 2019, 89(1): 1-12.
[33] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
[34] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H.Turbidites and deepwater sedimentation.Los Angeles: Society of Economic Paleontologists and Mineralogists, 1973: 1-38.
[35] Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
[36] Aoki I. Dust storms generated by mesoscale cold fronts in the Tarim Basin, northwest China[J]. Geophysical Research Letters, 2005, 32(6): L06807.
[37] Charba J. Application of gravity current model to analysis of squall-line gust front[J]. Monthly Weather Review, 1974, 102(2): 140-156.
[38] Simpson J E, Britter R E. A laboratory model of an atmospheric mesofront[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(449): 485-500.
[39] Arneborg L, Fiekas V, Umlauf L, et al. Gravity current dynamics and entrainment: A process study based on observations in the Arkona Basin[J]. Journal of Physical Oceanography, 2007, 37(8): 2094-2113.
[40] Legg S, Briegleb B, Chang Y, et al. Improving oceanic overflow representation in climate models: The gravity current entrainment climate process team[J]. Bulletin of the American Meteorological Society, 2009, 90(5): 657-670.
[41] Breard E C P, Lube G, Jones J R, et al. Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents[J]. Nature Geoscience, 2016, 9(10): 767-771.
[42] Dufek J. The fluid mechanics of pyroclastic density currents[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 459-485.
[43] Ancey C. Powder snow avalanches: Approximation as non-Boussinesq clouds with a Richardson number-dependent entrainment function[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1): F01005.
[44] Cuthbertson A J S, Lundberg P, Davies P A, et al. Gravity currents in rotating, wedge-shaped, adverse channels[J]. Environmental Fluid Mechanics, 2014, 14(5): 1251-1273.
[45] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
[46] Middleton G V. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 89-114.
[47] Bagnold R A. Auto-suspension of transported sediment; turbidity currents[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1962, 265(1322): 315-319.
[48] Kuenen P H. Matrix of turbidites: Experimental approach[J]. Sedimentology, 1966, 7(4): 267-297.
[49] Middleton G V. Experiments on density and turbidity currents: I. Motion of the head[J]. Canadian Journal of Earth Sciences, 1966, 3(4): 523-546.
[50] Wieczorek G F. Debris flows and hyperconcentrated streamflows[C]//Water forum '86: World water issues in evolution, proceedings of the conference. Long Beach: USGS, 1986: 219-226.
[51] Peakall J, Sumner E J. Submarine channel flow processes and deposits: A process-product perspective[J]. Geomorphology, 2015, 244: 95-120.
[52] Felix M, Peakall J. Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments[J]. Sedimentology, 2006, 53(1): 107-123.
[53] Pantin H M. Interaction between velocity and effective density in turbidity flow: Phase-plane analysis, with criteria for autosuspension[J]. Marine Geology, 1979, 31(1/2): 59-99.
[54] Kneller B, Buckee C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications[J]. Sedimentology, 2000, 47(Suppl.1): 62-94.
[55] Ellison T H, Turner J S. Turbulent entrainment in stratified flows[J]. Journal of Fluid Mechanics, 1959, 6(3): 423-448.
[56] Huang H, Imran J, Pirmez C, et al. The critical densimetric Froude number of subaqueous gravity currents can be non-unity or non-existent[J]. Journal of Sedimentary Research, 2009, 79(7): 479-485.
[57] Sumner E J, Peakall J, Parsons D R, et al. First direct measurements of hydraulic jumps in an active submarine density current[J]. Geophysical Research Letters, 2013, 40(22): 5904-5908.
[58] Parker G, Garcia M, Fukushima Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
[59] Peakall J, Felix M, McCaffrey B, et al. Particulate gravity currents: Perspectives[M]//McCaffrey B, Kneller B, Peakall J. Particulate gravity currents. Oxford: Blackwell Science, 2001: 1-8.
[60] Khripounoff A, Vangriesheim A, Babonneau N, et al. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth[J]. Marine Geology, 2003, 194(3/4): 151-158.
[61] Dorrell R M, Darby S E, Peakall J, et al. The critical role of stratification in submarine channels: Implications for channelization and long runout of flows[J]. Journal of Geophysical Research: Oceans, 2014, 119(4): 2620-2641.
[62] Azpiroz-Zabala M, Cartigny M J B, Sumner E J, et al. A general model for the helical structure of geophysical flows in channel bends[J]. Geophysical Research Letters, 2017, 44(23): 11911-932941.
[63] Vangriesheim A, Khripounoff A, Crassous P. Turbidity events observed in situ along the Congo submarine channel[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(23): 2208-2222.
[64] Sequeiros O E, Spinewine B, Beaubouef R T, et al. Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed[J]. Journal of Hydraulic Engineering, 2010, 136(7): 412-433.
[65] Hacker J, Linden P F, Dalziel S B. Mixing in lock-release gravity currents[J]. Dynamics of Atmospheres and Oceans, 1996, 24(1/2/3/4): 183-195.
[66] Simpson J E. Gravity currents in the environment and the laboratory[M]. Cambridge: Cambridge University Press, 1997.
[67] Middleton G V. Small-scale models of turbidity currents and the criterion for auto-suspension[J]. Journal of Sedimentary Research, 1966, 36(1): 202-208.
[68] Kneller B C, Bennett S J, McCaffrey W D. Velocity structure, turbulence and fluid stresses in experimental gravity currents[J]. Journal of Geophysical Research: Oceans, 1999, 104(C3): 5381-5391.
[69] Kneller B C, Bennett S J, McCaffrey W D. Velocity and turbulence structure of density currents and internal solitary waves: Potential sediment transport and the formation of wave ripples in deep water[J]. Sedimentary Geology, 1997, 112(3/4): 235-250.
[70] Straub K M, Mohrig D, McElroy B, et al. Interactions between turbidity currents and topography in aggrading sinuous submarine channels: A laboratory study[J]. GSA Bulletin, 2008, 120(3/4): 368-385.
[71] Kneller B, Nasr-Azadani M M, Radhakrishnan S, et al. Long-range sediment transport in the world's oceans by stably stratified turbidity currents[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8608-8620.
[72] Stacey M W, Bowen A J. The vertical structure of density and turbidity currents: Theory and observations[J]. Journal of Geophysical Research: Oceans, 1988, 93(C4): 3528-3542.
[73] Peakall J, McCaffrey B, Kneller B. A process model for the evolution, morphology, and architecture of sinuous submarine channels[J]. Journal of Sedimentary Research, 2000, 70(3): 434-448.
[74] Launder B E, Rodi W. The turbulent wall jet measurements and modeling[J]. Annual Review of Fluid Mechanics, 1983, 15(1): 429-459.
[75] Gray T E, Alexander J, Leeder M R. Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope[J]. Sedimentology, 2005, 52(3): 467-488.
[76] Altinakar M S, Graf W H, Hopfinger E J. Flow structure in turbidity currents[J]. Journal of Hydraulic Research, 1996, 34(5): 713-718.
[77] Sumner E J, Peakall J, Dorrell R M, et al. Driven around the bend: Spatial evolution and controls on the orientation of helical bend flow in a natural submarine gravity current[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 898-913.
[78] Buckee C, Kneller B, Peakall J. Turbulence structure in steady, solute-driven gravity currents[M]//McCaffrey W, Kneller B, Peakall J. Particulate gravity currents. Oxford: Blackwell Science, 2001: 173-187.
[79] Islam M A, Imran J. Vertical structure of continuous release saline and turbidity currents[J]. Journal of Geophysical Research, 2010, 115(C8): C08025.
[80] Cossu R, Wells M G. A comparison of the shear stress distribution in the bottom boundary layer of experimental density and turbidity currents[J]. European Journal of Mechanics-B/Fluids, 2012, 32: 70-79.
[81] van Rijn L C. Sediment transport, part III: Bed forms and alluvial roughness[J]. Journal of Hydraulic Engineering, 1984, 110(12): 1733-1754.
[82] Hjulstrom F. Transportation of detritus by moving water[C]//Trask P D. Recent marine sediments. Tulsa, Oklahoma: American Association of Petroleum Geologists, 1939: 5-31.
[83] Shields A. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung[D]. Berlin: Technical University Berlin, 1936.
[84] Fernandes A M, Buttles J, Mohrig D. Flow substrate interactions in aggrading and degrading submarine channels[J]. Journal of Sedimentary Research, 2020, 90(6): 573-583.
[85] Pohl F, Eggenhuisen J T, Tilston M, et al. New flow relaxation mechanism explains scour fields at the end of submarine channels[J]. Nature Communications, 2019, 10(1): 4425.
[86] Giorgio Serchi F, Peakall J, Ingham D B, et al. A unifying computational fluid dynamics investigation on the river-like to river-reversed secondary circulation in submarine channel bends[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06012.
[87] McCarron C J, van Landeghem K J J, Baas J H, et al. The hiding-exposure effect revisited: A method to calculate the mobility of bimodal sediment mixtures[J]. Marine Geology, 2019, 410: 22-31.
[88] Wiberg P L, Smith J D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments[J]. Water Resources Research, 1987, 23(8): 1471-1480.
[89] Blom A. Different approaches to handling vertical and streamwise sorting in modeling river morphodynamics[J]. Water Resources Research, 2008, 44(3): W03415.
[90] Bartzke G, Bryan K R, Pilditch C A, et al. On the stabilizing influence of silt on sand beds[J]. Journal of Sedimentary Research, 2013, 83(8): 691-703.
[91] Mitchener H, Torfs H. Erosion of mud/sand mixtures[J]. Coastal Engineering, 1996, 29(1/2): 1-25.
[92] Lichtman I D, Baas J H, Amoudry L O, et al. Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions[J]. Geomorphology, 2018, 315: 17-32.
[93] Parsons J D, Friedrichs C T, Traykovski P A, et al. The mechanics of marine sediment gravity flows[M]//Nittrouer C A, Austin J A, Field M E, et al. Continental margin sedimentation: From sediment transport to sequence stratigraphy. Wiley-Blackwell, 2007, 37: 275-337.
[94] Hall B, Meiburg E, Kneller B. Channel formation by turbidity currents: Navier-Stokes-based linear stability analysis[J]. Journal of Fluid Mechanics, 2008, 615: 185-210.
[95] Janocko M, Nemec W, Henriksen S, et al. The diversity of deep-water sinuous channel belts and slope valley-fill complexes[J]. Marine and Petroleum Geology, 2013, 41: 7-34.
[96] Arnott R W C, Tilston M, Fraino P, et al. Laterally accreting sinuous channels and their deposits: The Goldilocks of deep-water slope systems[J]. Journal of Sedimentary Research, 2021, 91(5): 451-463.
[97] Gong C L, Wang Y M, Steel R J, et al. Flow processes and sedimentation in unidirectionally migrating deep-water channels: From a three-dimensional seismic perspective[J]. Sedimentology, 2016, 63(3): 645-661.
[98] Wynn R B, Cronin B T, Peakall J. Sinuous deep-water channels: Genesis, geometry and architecture[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 341-387.
[99] Dorrell R M, Peakall J, Sumner E J, et al. Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones[J]. Marine Geology, 2016, 381: 181-193.
[100] Kane I A, McCaffrey W D, Peakall J. Controls on sinuosity evolution within submarine channels[J]. Geology, 2008, 36(4): 287.
[101] Flood R D, Manley P L, Kowsmann R O, et al. Seismic facies and Late Quaternary growth of Amazon submarine fan[M]//Weimer P, Link M H. Seismic facies and sedimentary processes of submarine fans and turbidite systems. New York: Springer, 1991: 415-433.
[102] Babonneau N, Savoye B, Cremer M, et al. Sedimentary architecture in meanders of a submarine channel: Detailed study of the present Congo turbidite channel (Zaiango Project)[J]. Journal of Sedimentary Research, 2010, 80(10): 852-866.
[103] Curray J R, Emmel F J, Moore D G. The Bengal fan: Morphology, geometry, stratigraphy, history and processes[J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223.
[104] Birman V K, Meiburg E, Kneller B. The shape of submarine levees: Exponential or power law?[J]. Journal of Fluid Mechanics, 2009, 619: 367-376.
[105] Nakajima T, Kneller B C. Quantitative analysis of the geometry of submarine external levées[J]. Sedimentology, 2013, 60(4): 877-910.
[106] Kane I A, Hodgson D M. Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa[J]. Marine and Petroleum Geology, 2011, 28(3): 807-823.
[107] Straub K M, Mohrig D, Buttles J, et al. Quantifying the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents: A laboratory study[J]. Marine and Petroleum Geology, 2011, 28(3): 744-760.
[108] Amos K J, Peakall J, Bradbury P W, et al. The influence of bend amplitude and planform morphology on flow and sedimentation in submarine channels[J]. Marine and Petroleum Geology, 2010, 27(7): 1431-1447.
[109] Janocko M, Cartigny M B J, Nemec W, et al. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations[J]. Marine and Petroleum Geology, 2013, 41: 222-249.
[110] Ezz H, Cantelli A, Imran J. Experimental modeling of depositional turbidity currents in a sinuous submarine channel[J]. Sedimentary Geology, 2013, 290: 175-187.
[111] Huang H Q, Imran J, Pirmez C. The depositional characteristics of turbidity currents in submarine sinuous channels[J]. Marine Geology, 2012, 329-331: 93-102.
[112] Jobe Z R, Sylvester Z, Parker A O, et al. Rapid adjustment of submarine channel architecture to changes in sediment supply[J]. Journal of Sedimentary Research, 2015, 85(6): 729-753.
[113] Xu J P, Barry J P, Paull C K. Small-scale turbidity currents in a big submarine canyon[J]. Geology, 2013, 41(2): 143-146.
[114] Xu J P, Sequeiros O E, Noble M A. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey canyon, USA[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 89: 11-34.
[115] Azpiroz-Zabala M, Cartigny M J B, Talling P J, et al. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons[J]. Science Advances, 2017, 3(10): e1700200.
[116] Symons W O, Sumner E J, Paull C K, et al. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon[J]. Geology, 2017, 45(4): 367-370.
[117] Paull C K, Talling P J, Maier K L, et al. Powerful turbidity currents driven by dense basal layers[J]. Nature Communications, 2018, 9(1): 4114.
[118] Clare M, Lintern D G, Rosenberger K, et al. Lessons learned from the monitoring of turbidity currents and guidance for future platform designs[J]. Geological Society, London, Special Publications, 2020, 500(1): 605-634.
[119] Heijnen M S, Clare M A, Cartigny M J B, et al. Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution[J]. Nature Communications, 2020, 11(1): 3129.
[120] Liu J T, Wang Y, Yang R J, et al. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon[J]. Journal of Geophysical Research: Oceans, 2012, 117(C4): C04033.
[121] Kuenen P H, de Sitter L U. Experimental investigation into the mechanism of folding[J]. Leidse Geologische Mededelingen, 1938, 10(1): 217-239.
[122] Garcia M H. Depositional turbidity currents laden with poorly sorted sediment[J]. Journal of Hydraulic Engineering, 1994, 120(11): 1240-1263.
[123] de Rooij F, Dalziel S B. Time-and space-resolved measurements of deposition under turbidity currents[M]//McCaffrey W, Kneller B, Peakall J. Particulate gravity currents. Oxford: Blackwell Science, 2001: 207-215.
[124] Corney R K T, Peakall J, Parsons D R, et al. The orientation of helical flow in curved channels[J]. Sedimentology, 2006, 53(2): 249-257.
[125] Keevil G M, Peakall J, Best J L, et al. Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel[J]. Marine Geology, 2006, 229(3/4): 241-257.
[126] Keevil G M, Peakall J, Best J L. The influence of scale, slope and channel geometry on the flow dynamics of submarine channels[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 487-503.
[127] Imran J, Islam M A, Huang H Q, et al. Helical flow couplets in submarine gravity underflows[J]. Geology, 2007, 35(7): 659-662.
[128] Islam M A, Imran J, Pirmez C, et al. Flow splitting modifies the helical motion in submarine channels[J]. Geophysical Research Letters, 2008, 35(22): L22603.
[129] Abad J D, Sequeiros O E, Spinewine B, et al. Secondary current of saline underflow in a highly meandering channel: Experiments and theory[J]. Journal of Sedimentary Research, 2011, 81(11): 787-813.
[130] Cossu R, Wells M G, Peakall J. Latitudinal variations in submarine channel sedimentation patterns: The role of Coriolis forces[J]. Journal of the Geological Society, 2015, 172(2): 161-174.
[131] Dorrell R M, Peakall J, Burns C, et al. A novel mixing mechanism in sinuous seafloor channels: Implications for submarine channel evolution[J]. Geomorphology, 2018, 303: 1-12.
[132] Kelly R W, Dorrell R M, Burns A D, et al. The structure and entrainment characteristics of partially confined gravity currents[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 2110-2125.
[133] Härtel C, Meiburg E, Necker F. Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries[J]. Journal of Fluid Mechanics, 2000, 418: 189-212.
[134] Necker F, Härtel C, Kleiser L, et al. High-resolution simulations of particle-driven gravity currents[J]. International Journal of Multiphase Flow, 2002, 28(2): 279-300.
[135] Necker F, Härtel C, Kleiser L, et al. Mixing and dissipation in particle-driven gravity currents[J]. Journal of Fluid Mechanics, 2005, 545: 339-372.
[136] Kassem A, Imran J. Three-dimensional modeling of density current. II. Flow in sinuous confined and uncontined channels[J]. Journal of Hydraulic Research, 2004, 42(6): 591-602.
[137] Das H S, Imran J, Pirmez C, et al. Numerical modeling of flow and bed evolution in meandering submarine channels[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10): C10009.
[138] Blanchette F, Piche V, Meiburg E, et al. Evaluation of a simplified approach for simulating gravity currents over slopes of varying angles[J]. Computers & Fluids, 2006, 35(5): 492-500.
[139] Huang H, Imran J, Pirmez C. Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research: Oceans, 2007, 112(C1): C01014.
[140] Cantero M I, Balachandar S, García M H, et al. Turbulent structures in planar gravity currents and their influence on the flow dynamics[J]. Journal of Geophysical Research, 2008, 113(C8): C08018.
[141] Cantero M I, Balachandar S, Cantelli A, et al. Turbidity current with a roof: Direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment[J]. Journal of Geophysical Research, 2009, 114(C3): C03008.
[142] Mahdinia M, Firoozabadi B, Farshchi M, et al. Large eddy simulation of lock-exchange flow in a curved channel[J]. Journal of Hydraulic Engineering, 2012, 138(1): 57-70.
[143] 黄璐,张家年,吴昊雨,等. 弯曲海底峡谷中浊流的三维流动及沉积的初步研究[J]. 沉积学报,2013,31(6):1001-1007.

Huang Lu, Zhang Jianian, Wu Haoyu, et al. Preliminary study of three-dimensional flow and deposition of turbidity currents in sinuous submarine canyons[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1001-1007.
[144] 郭彦英,张家年,周宗鹏,等. 断面曲率半径对海底浊流的影响[J]. 安徽工业大学学报(自然科学版),2013,30(3):240-244,254.

Guo Yanying, Zhang Jianian, Zhou Zongpeng, et al. Influences of cross-sectional curvature on turbidity currents in sinuous submarine canyons[J]. Journal of Anhui University of Technology (Natural Science), 2013, 30(3): 240-244, 254.
[145] Ezz H, Imran J. Curvature-induced secondary flow in submarine channels[J]. Environmental Fluid Mechanics, 2014, 14(2): 343-370.
[146] Heiniö P, Davies R J. Knickpoint migration in submarine channels in response to fold growth, western Niger Delta[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 434-449.
[147] Paull C K, Ussler III W, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey canyon, offshore California[J]. Geosphere, 2010, 6(6): 755-774.
[148] Armitage D A, Mchargue T, Fildani A, et al. Postavulsion channel evolution: Niger Delta continental slope[J]. AAPG Bulletin, 2012, 96(5): 823-843.
[149] Stevenson C J, Talling P J, Wynn R B, et al. The flows that left no trace: Very large-volume turbidity currents that bypassed sediment through submarine channels without eroding the sea floor[J]. Marine and Petroleum Geology, 2013, 41: 186-205.
[150] Islam M A, Imran J. Experimental modeling of gravity underflow in a sinuous submerged channel[J]. Journal of Geophysical Research, 2008, 113(C7): C07041.
[151] Mohrig D, Buttles J. Deep turbidity currents in shallow channels[J]. Geology, 2007, 35(2): 155-158.
[152] Dorrell R M, Darby S E, Peakall J, et al. Superelevation and overspill control secondary flow dynamics in submarine channels[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3895-3915.
[153] Kuenen P H. Density currents in connection with the problem of submarine canyons[J]. Geological Magazine, 1938, 75(6): 241-249.
[154] Stagnaro M, Bolla Pittaluga M. Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions[J]. Earth Surface Dynamics, 2014, 2(1): 167-180.
[155] Harlow F H, Welch J E. Numerical study of large-amplitude free-surface motions[J]. The Physics of Fluids, 1966, 9(5): 842-851.
[156] Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
[157] Huang H Q, Imran J, Pirmez C. Numerical model of turbidity currents with a deforming bottom Boundary[J]. Journal of Hydraulic Engineering, 2005, 131(4): 283-293.
[158] Boussinesq J. Essai sur la théorie des eaux courantes[M]. Paris: Imprimerie Nationale, 1877.
[159] Choi S U, García M H. k-ε turbulence modeling of density currents developing two dimensionally on a slope[J]. Journal of Hydraulic Engineering, 2002, 128(1): 55-63.
[160] Paik J, Eghbalzadeh A, Sotiropoulos F. Three-dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains[J]. Journal of Hydraulic Engineering, 2009, 135(6): 505-521.
[161] Pirmez C, Imran J. Reconstruction of turbidity currents in Amazon Channel[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 823-849.
[162] Brørs B, Eidsvik K J. Dynamic reynolds stress modeling of turbidity currents[J]. Journal of Geophysical Research: Oceans, 1992, 97(C6): 9645-9652.
[163] Benjamin T B. Gravity currents and related phenomena[J]. Journal of Fluid Mechanics, 1968, 31(2): 209-248.
[164] Cantero M I, Balachandar S, Garcia M H. High-resolution simulations of cylindrical density currents[J]. Journal of Fluid Mechanics, 2007, 590: 437-469.
[165] 高抒. 长江口与东海陆架泥质沉积动力过程与环境效应:长期数据采集需求[J]. 海洋学研究,2021,39(4):1-10.

Gao Shu. Dynamic processes of the East China Sea inner shelf mud deposits associated with the Changjiang (Yangtze River) and their environmental consequences: An appeal for long-term observation requirements[J]. Journal of Marine Sciences, 2021, 39(4): 1-10.
[166] 朱伟林,钟锴,李友川,等. 南海北部深水区油气成藏与勘探[J]. 科学通报,2012,57(20):1833-1841.

Zhu Weilin, Zhong Kai, Li Youchuan, et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins[J]. Chinese Science Bulletin, 2012, 57(20): 1833-1841.
[167] 田冬梅,姜涛,张道军,等. 海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海组一段为例[J]. 地球科学,2017,42(1):130-141.

Tian Dongmei, Jiang Tao, Zhang Daojun, et al. Genesis mechanism and characteristics of submarine channel: A case study of the First member of Yinggehai Formation in Ledong area of Yinggehai Basin[J]. Earth Science, 2017, 42(1): 130-141.
[168] 王振峰,孙志鹏,张迎朝,等. 南海北部琼东南盆地深水中央峡谷大气田分布与成藏规律[J]. 中国石油勘探,2016,21(4):54-64.

Wang Zhenfeng, Sun Zhipeng, Zhang Yingzhao, et al. Distribution and hydrocarbon accumulation mechanism of the giant deepwater Central canyon gas field in Qiongdongnan Basin, northern South China Sea[J]. China Petroleum Exploration, 2016, 21(4): 54-64.
[169] Liang C, Liu C Y, Xie X N, et al. The role of large-scale mass wasting processes in changing the sediment dispersal pattern in the deep-water Central canyon of the northwestern South China Sea[J]. Marine and Petroleum Geology, 2020, 122: 104693.
[170] 王星星,蔡峰,孙治雷,等. 南海北部东沙海底峡谷沉积演化过程及其地质意义[J]. 地球科学,2021,46(3):1023-1037.

Wang Xingxing, Cai Feng, Sun Zhilei, et al. Sedimentary evolution and geological significance of the Dongsha submarine canyon in the northern South China Sea[J]. Earth Science, 2021, 46(3): 1023-1037.