[1] Hobson G D, Tiratsoo E N. Introduction to petroleum geology[M]. Bucks, UK: Scientific Press Ltd, 1975: 1-300.
[2] 吴崇筠,薛叔浩. 中国含油气盆地沉积学[M]. 北京:石油工业出版社,1993:1-484.

Wu Chongyun, Xue Shuhao. Sedimentology of petroliferous basins in China[M]. Beijing: Petroleum Industry Press, 1993: 1-484.
[3] Zimmerle W. Petroleum sedimentology[M]. Stuttgart, Germany: Springer, 1995: 1-400.
[4] 刘宝珺. 中国沉积学的回顾和展望[J]. 矿物岩石,2001,21(3):1-7.

Liu Baojun. Sedimentology of China: A review and look forward[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 1-7.
[5] 孙枢. 中国沉积学的今后发展:若干思考与建议[J]. 地学前缘,2005,12(2):3-10.

Sun Shu. Sedimentology in China: Perspectives and suggestions[J]. Earth Science Frontiers, 2005, 12(2): 3-10.
[6] 王成善,郑和荣,冉波,等. 活动古地理重建的实践与思考:以青藏特提斯为例[J]. 沉积学报,2010,28(5):849-860.

Wang Chengshan, Zheng Herong, Ran Bo, et al. On paleogeographic reonstruction: An example for application in Tibetan tethys[J]. Acta Sedimentologica Sinica, 2010, 28(5): 849-860.
[7] 孙龙德,方朝亮,李峰,等. 中国沉积盆地油气勘探开发实践与沉积学研究进展[J]. 石油勘探与开发,2010,37(4):385-396.

Sun Longde, Fang Chaoliang, Li Feng, et al. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum Exploration and Development, 2010, 37(4): 385-396.
[8] 邹才能. 非常规油气地质[M]. 北京:地质出版社,2011:1-310.

Zou Caineng. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011: 1-310.
[9] 邹才能. 非常规油气地质学[M]. 北京:地质出版社,2014:1-463.

Zou Caineng. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014: 1-463.
[10] 顾家裕,张兴阳. 油气沉积学发展回顾和应用现状[J]. 沉积学报,2003,21(1):137-141.

Gu Jiayu, Zhang Xingyang. Development review and current application of petroleum sedimentology[J]. Acta Sedimentologica Sinica, 2003, 21(1): 137-141.
[11] 孙龙德,方朝亮,李峰,等. 油气勘探开发中的沉积学创新与挑战[J]. 石油勘探与开发,2015,42(2):129-136.

Sun Longde, Fang Chaoliang, Li Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2): 129-136.
[12] 朱如凯,邹才能,袁选俊,等. 中国能源沉积学研究进展与发展战略思考[J]. 沉积学报,2017,35(5):1004-1015.

Zhu Rukai, Zou Caineng, Yuan Xuanjun, et al. Research progress and development strategic thinking on energy sedimentology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1004-1015.
[13] Schmoker J W. Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-1999.
[14] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1-11.

Jia Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[15] 邹才能,杨智,张国生,等. 非常规油气地质学建立及实践[J]. 地质学报,2019,93(1):12-23.

Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1): 12-23.
[16] 邱振,邹才能,李建忠,等. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学,2013,24(2):238-246.

Qiu Zhen, Zou Caineng, Li Jianzhong, et al. Unconventional petroleum resources assessment: Progress and future prospects[J]. Natural Gas Geoscience, 2013, 24(2): 238-246.
[17] 邹才能,杨智,张国生,等. 非常规油气概念、特征、潜力及技术:兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385-399,454.

Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.
[18] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701.

Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.
[19] 邹才能,丁云宏,卢拥军,等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144-154.

Zou Caineng, Ding Yunhong, Lu Yongjun, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
[20] Qiu Z, Zou C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2019, doi:  10.1016/j.jseaes.2019.103989.
[21] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[22] 陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208.

Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.
[23] 周立宏,蒲秀刚,邓远,等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏,2016,28(1):6-15.

Zhou Lihong, Pu Xiugang, Deng Yuan, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15.
[24] 王玉满,王淑芳,董大忠,等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2016,23(1):119-133.

Wang Yuman, Wang Shufang, Dong Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133.
[25] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.

Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
[26] 蒋裕强,宋益滔,漆麟,等. 中国海相页岩岩相精细划分及测井预测:以四川盆地南部威远地区龙马溪组为例[J]. 地学前缘,2016,23(1):107-118.

Jiang Yuqiang, Song Yitao, Qi Lin, et al. Fine lithofacies of China's marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China[J]. Earth Science Frontiers, 2016, 23(1): 107-118.
[27] 邹才能,赵政璋,杨华,等. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报,2009,27(6):1065-1075.

Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075.
[28] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
[29]
[30] McKenzie D P, Parker R L. The North Pacific: An example of tectonics on a sphere[J]. Nature, 1967, 216(5122): 1276-1280.
[31] Le Pichon X. Sea-floor spreading and continental drift[J]. Journal of Geophysical Research, 1968, 73(12): 3661-3697.
[32] Morgan W J. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 1968, 73(6): 1959-1982.
[33] Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J]. Science, 1980, 208(4448): 1095-1108.
[34] Raup D M, Sepkoski Jr J J. Mass extinctions in the marine fossil record[J]. Science, 1982, 215(4539): 1501-1503.
[35] Sepkoski Jr J J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10(2): 246-267.
[36] 戎嘉余,黄冰. 生物大灭绝研究三十年[J]. 中国科学(D辑):地球科学,2014,44(3):377-404.

Rong Jiayu, Huang Bing. Study of mass extinction over the past thirty years: A synopsis[J]. Science China (Seri. D): Earth Sciences, 2014, 44(3): 377-404.
[37] Morgan W J. Deep mantle convection plumes and plate motions[J]. AAPG Bulletin, 1972, 56(2): 203-213.
[38] Condie K C. Supercontinents and superplume events: Distinguishing signals in the geologic record[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1/2): 319-332.
[39] 李献华,李武显,何斌. 华南陆块的形成与Rodinia超大陆聚合—裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559.

Li Xianhua, Li Wuxian, He Bin. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559.
[40] Li Z X, Mitchell R N, Spencer C J, et al. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 2019, 323: 1-5.
[41] 殷鸿福,宋海军. 古、中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学(D辑):地球科学,2013,43(10):1539-1552.

Yin Hongfu, Song Haijun. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition[J]. Science China (Seri. D): Earth Sciences, 2013, 43(10): 1539-1552.
[42] 沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135.

Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135.
[43] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 1-168.
[44] 王清晨. 事件沉积学[J]. 地球科学进展,1991,6(3):90-91.

Wang Qingchen. Advance of event deposition[J]. Advances in Earth Sciences, 1991, 6(3): 90-91.
[45] Shanmugam G. 50 years of the turbidite Paradigm (1950s—1990s): Deep-water processes and facies models—a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342.
[46] 何起祥. 沉积地球科学的历史回顾与展望[J]. 沉积学报,2003,21(1):10-18.

He Qixiang. Sedimentary earth sciences: Yesterday, today and tomorrow[J]. Acta Sedimentologica Sinica, 2003, 21(1): 10-18.
[47] 王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究:从重大地质事件探寻地球表层系统耦合[J]. 地球科学进展,2006,21(7):838-842.

Wang Chengshan. Coupling of the earth surface system: Inferring from the Cretaceous major geological events[J]. Advances in Earth Science, 2006, 21(7): 838-842.
[48] 胡修棉,王成善. 白垩纪大洋红层:特征、分布与成因[J]. 高校地质学报,2007,13(1):1-13.

Hu Xiumian, Wang Chengshan. Cretaceous oceanic red beds: Characters, occurrences, and origin[J]. Geological Journal of China Universities, 2007, 13(1): 1-13.
[49] Talling P J, Amy L A, Wynn R B. New insight into the evolution of large-volume turbidity currents: Comparison of turbidite shape and previous modelling results[J]. Sedimentology, 2007, 54(4): 737-769.
[50] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
[51] Heezen B C, Ewing M. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. American Journal of Science, 1952, 250(12): 849-873.
[52] Walker R G. The origin and significance of the internal sedimentary structures of turbidites[J]. Proceedings of the Yorkshire Geological Society, 1965, 35(1): 1-32.
[53] Einsele G, Seilacher A. Cyclic and event stratification[M]. New York: Springer, 1982: 1-536.
[54] Hsü K J. Actualistic catastrophism address of the retiring president of the international association of sedimentologists[J]. Sedimentology, 1983, 30(1): 3-9.
[55] 欧阳自远,管云彬. 巨大撞击事件诱发古气候旋回的初步研究[J]. 科学通报,1992(9):829-831.

Ouyang Ziyuan, Guan Yunbin. Preliminary study on paleoclimate cycle induced by huge collision[J]. Chinese Science Bulletin, 1992(9): 829-831.
[56] Myrow P M, Southard J B. Tempestite deposition[J]. Journal of Sedimentary Research, 1996, 66(5): 875-887.
[57] 龚一鸣. 风暴岩、震积岩、海啸岩:几个名词含义的商榷[J]. 地质论评,1988,34(5):481-482.

Gong Yiming. Tempestite, seismite, and tsunamite: A discussion of several sedimentological terms[J]. Geological Review, 1988, 34(5): 481-482.
[58] Hsu K J. Studies of ventura field, California: Faies geometry and genesis of Lower Pliocene turbidites[J]. AAPG Bulletin, 1977, 61: 137-168.
[59] 孙枢,李继亮. 我国浊流与其他重力流沉积研究进展概况和发展方向问题刍议[J]. 沉积学报,1984,2(4):1-7.

Sun Shu, Li Jiliang. Researches on turbidity and other gravity flow sedimentation in China[J]. Acta Sedimentologica Sinica, 1984, 2(4): 1-7.
[60] 郑永飞. 新元古代雪球地球事件与地幔超柱活动[J]. 自然杂志,2005,27(1):28-32.

Zheng Yongfei. Neoproterozoic snowball earth event and mantle superplume activity[J]. Chinese Journal of Nature, 2005, 27(1): 28-32.
[61] Parrish J T, Soreghan G S. Sedimentary geology and the future of paleoclimate studies[J]. The Sedimentary Record, 2013, 11(2): 4-10.
[62] Zambito IV J J, Benison K C. Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite[J]. Geology, 2013, 41(5): 587-590.
[63] Dewey J F, Bird J M. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 1970, 75(14): 2625-2647.
[64] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘,2002,9(4):341-353.

Xu Yigang. Mantle plumes, large igneous provinces and their geologic consequences[J]. Earth Science Frontiers, 2002, 9(4): 341-353.
[65] 戎嘉余,方宗杰. 生物大灭绝与复苏:来自华南古生代和三叠纪的证据[M]. 合肥:中国科学技术大学出版社,2004:1-1087.

Rong Jiayu, Fang Zongjie. Mass extinction and recovery-evidences from the Palaeozoic and Triassic of South China[M]. Heifei: University of Science and Technology of China Press, 2004: 1-1087.
[66] Shen S Z, Crowley J L, Wang Y, et al. Calibrating the End-Permian mass extinction[J]. Science, 2011, 334(6061): 1367-1372.
[67] 谢树成. 距今2.52亿年前后的生物地球化学循环与海洋生态系统崩溃:对现代海洋的启示[J]. 中国科学(D辑):地球科学,2018,48(12):1600-1605.

Xie Shucheng. The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans[J]. Science China (Seri. D): Earth Sciences, 2018, 48(12): 1600-1605.
[68] Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
[69] Miller K G, Kominz M A, Browning J V, et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[70] Haq B U, Schutter S R. A chronology of paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[71] 王成善,胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2):11-21.

Wang Chengshan, Hu Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
[72] Grice K, Cao C Q, Love G D, et al. Photic zone Euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5710): 706-709.
[73] 胡修棉. 东特提斯洋晚中生代—古近纪重大事件研究进展[J]. 自然杂志,2015,37(2):93-102.

Hu Xiumian. Overview of the Late Mesozoic Paleogene major paleoceanographic and geological events in eastern tethyan ocean[J]. Chinese Journal of Nature, 2015, 37(2): 93-102.
[74] Zhang S C, Wang X M, Wang H J, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.
[75] Zou C N, Qiu Z, Poulton S W, et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538.
[76] Trabucho-Alexandre J, Hay W W, de Boer P L. Phanerozoic environments of black shale deposition and the Wilson Cycle[J]. Solid Earth, 2012, 3(1): 29-42.
[77] Lee C T A, Jiang H H, Ronay E, et al. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous[J]. Scientific Reports, 2018, 8: 4197.
[78] 付金华,邓秀芹,张晓磊,等. 鄂尔多斯盆地三叠系延长组深水砂岩与致密油的关系[J]. 古地理学报,2013,15(5):624-634.

Fu Jinhua, Deng Xiuqin, Zhang Xiaolei, et al. Relationship between deepwater sandstone and tight oil of the Triassic Yanchang Formation in Ordos Basin[J]. Journal of Palaeogeography, 2013, 15(5): 624-634.
[79] 邱振,邹才能,王红岩,等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素探讨[J]. 天然气地球科学,2019,doi:  10.11764/j.issn.1672-1926.2019.11.003.

Qiu Zhen, Zou Caineng, Wang Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Shale gas in South China[J]. Natural Gas Geoscience, 2019, doi:  10.11764/j.issn.1672-1926.2019.11.003.
[80] 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520.

Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520.
[81] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质,2015,36(1):1-6.

Wang Zhigang. Breakthrough of fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6.
[82] 郭旭升,胡东风,魏志红,等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探,2016,21(3):24-37.

Guo Xusheng, Hu Dongfeng, Wei Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37.
[83] 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):561-574.

Ma Yong-sheng, Cai Xunyu, Zhao Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.
[84] 马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发,2018,45(1):161-169.

Ma Xinhua, Xie Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.
[85] 郑述权,谢祥锋,罗良仪,等. 四川盆地深层页岩气水平井优快钻井技术:以泸203井为例[J]. 天然气工业,2019,39(7):88-93.

Zheng Shuquan, Xie Xiangfeng, Luo Liangyi, et al. Fast and efficient drilling technologies for deep shale gas horizontal wells in the Sichuan Basin: A case study of well Lu 203[J]. Natural Gas Industry, 2019, 39(7): 88-93.
[86] 胡伟光,李发贵,范春华,等. 四川盆地海相深层页岩气储层预测与评价:以丁山地区为例[J]. 天然气勘探与开发,2019,42(3):66-77.

Hu Weiguang, Li Fagui, Fan Chunhua, et al. Prediction and evaluation on deeper marine shale-gas reservoirs, Dingshan area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 66-77.
[87] 金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.

Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
[88] 何治亮,聂海宽,张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘,2016,23(2):8-17.

He Zhiliang, Nie Haikuan, Zhang Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.
[89] 翟刚毅,王玉芳,包书景,等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学,2017,42(7):1057-1068.

Zhai Gangyi, Wang Yufang, Bao Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
[90] Brenchley P J, Newall G. A facies analysis of upper Ordovician regressive sequences in the Oslo region, Norway: A record of glacio-eustatic changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1980, 31: 1-38.
[91] Sutcliffe O E, Dowdeswell J A, Whittington R J, et al. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit[J]. Geology, 2000, 28(11): 967-970.
[92] Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J]. Science, 2008, 321(5888): 550-554.
[93] Vandenbroucke T R A, Armstrong H A, Williams M, et al. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 14983-14986.
[94] Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician-Early Silurian glaciation[J]. Science, 2011, 331(6019): 903-906.
[95] Huff W D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 2008, 178(1): 276-287.
[96] Tao H F, Qiu Z, Lu B, et al. Volcanic activities triggered the first global cooling event in the Phanerozoic[J]. Journal of Asian Earth Sciences, 2019, doi:  10.1016/j.jseaes.2019.104074.
[97] Hammarlund E U, Dahl T W, Harper D A T, et al. A sulfidic driver for the End-Ordovician mass extinction[J]. Earth and Planetary Science Letters, 2012, 331-332: 128-139.
[98] Zou C N, Qiu Z, Wei H Y, et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11.
[99] Bartlett R, Elrick M, Wheeley J R, et al. Abrupt global-ocean anoxia during the Late Ordovician-Early Silurian detected using uranium isotopes of marine carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5896-5901.
[100] Li N, Li C, Fan J X, et al. Sulfate-controlled marine euxinia in the semi-restricted inner Yangtze Sea (South China) during the Ordovician-Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109281.
[101] Harper D A T, Hammarlund E U, C M ? Rasmussen. End ordovician extinctions: A coincidence of causes[J]. Gondwana Research, 2014, 25(4): 1294-1307.
[102] Su W B, Huff W D, Ettensohn F R, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research, 2009, 15(1): 111-130.
[103] 戎嘉余,陈旭,王怿,等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学(D辑):地球科学,2011,41(10):1407-1415.

Rong Jiayu, Chen Xu, Wang Yi, et al. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Science China (Seri. D): Earth Sciences, 2011, 41(10): 1407-1415.
[104] 戎嘉余,王怿,詹仁斌,等. 中国志留纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):93-114.

Rong Jiayu, Wang Yi, Zhan Renbin, et al. Silurian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 93-114.
[105] 戎嘉余,黄冰. 华南奥陶纪末生物大灭绝的肇端标志:腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布[J]. 地质学报,2019,93(3):509-527.

Rong Jiayu, Huang Bing. An indicator of the onset of the End Ordovician mass extinction in South China: The Manosia brachiopod assemblage and its diachronous distribution[J]. Acta Geologica Sinica, 2019, 93(3): 509-527.
[106] 陈旭,樊隽轩,陈清,等. 论广西运动的阶段性[J]. 中国科学(D辑):地球科学,2014,44(5):842-850.

Chen Xu, Fan Junxuan, Chen Qing, et al. Toward a stepwise Kwangsian Orogeny[J]. Science China (Seri. D): Earth Sciences, 2014, 44(5): 842-850.
[107] 卢斌,邱振,周杰,等. 四川盆地及周缘五峰组—龙马溪组钾质斑脱岩特征及其地质意义[J]. 地质科学,2017,52(1):186-202.

Lu Bin, Qiu Zhen, Zhou Jie, et al. The characteristics and geological significance of the K-bentonite in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Chinese Journal of Geology, 2017, 52(1): 186-202.
[108] 徐亚军,杜远生. 从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化[J]. 地球科学,2018,43(2):333-353.

Xu Yajun, Du Yuansheng. From periphery collision to intraplate orogeny: Early Paleozoic orogenesis in southeastern part of South China[J]. Earth Science, 2018, 43(2): 333-353.
[109] 张元动,詹仁斌,甄勇毅,等. 中国奥陶纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):66-92.

Zhang Yuandong, Zhan Renbin, Zhen Yongyi, et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 66-92.
[110] 王玉满,李新景,王皓,等. 四川盆地东部上奥陶统五峰组—下志留统龙马溪组斑脱岩发育特征及地质意义[J]. 石油勘探与开发,2019,46(4):653-665.

Wang Yuman, Li Xinjing, Wang Hao, et al. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(4): 653-665.
[111] 邱振,卢斌,陈振宏,等. 火山灰沉积与页岩有机质富集关系探讨:以五峰组—龙马溪组含气页岩为例[J]. 沉积学报,2019,37(6):1296-1308.

Qiu Zhen, Lu Bin, Chen Zhenhong, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308.
[112] Blakey R C. Gondwana paleogeography from assembly to breakup—A 500 m. y. odyssey[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, Colorado: Geological Society of America, 2008: 1-28.
[113] Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29.
[114] Torsvik T H, Cocks L R M. Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24(3/4): 999-1030.
[115] 舒良树. 华南构造演化的基本特征[J]. 地质通报,2012,31(7):1035-1053.

Shu Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053.
[116] 马永生,陈洪德,王国力. 中国南方层序地层与古地理[M]. 北京:科学出版社,2009:303-312.

Ma Yongsheng, Chen Hongde, Wang Guoli. Sequence and palaeogeography in South China[M]. Beijing: Science Press, 2009: 303-312.
[117] Brenchley P J, Marshall J D, Harper D A T, et al. A Late Ordovician (Hirnantian) karstic surface in a submarine channel, recording glacio-eustatic sea-level changes: Meifod, central Wales[J]. Geological Journal, 2006, 41(1): 1-22.
[118] Loi A, Ghienne J F, Dabard M P, et al. The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section (Anti-Atlas, southern Morocco)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(3/4): 332-358.
[119] Frakes L A, Francis J E, Skytus J I. Climate modes of the Phanerozoic[M]. New York: Cambridge University Press, 1992: 1-274.
[120] Brenchley P J, Marshall J D, Carden G A F, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.
[121] Berner R A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5653-5664.
[122] Ghienne J F, Desrochers A, Vandenbroucke T R A, et al. A Cenozoic-style scenario for the End-Ordovician glaciation[J]. Nature Communications, 2014, 5: 4485.
[123] Wang G X, Zhan R B, Percival I G. The End-Ordovician mass extinction: A single-pulse event?[J]. Earth-Science Reviews, 2019, 192: 15-33.
[124] Bergstr?m S M, Huff W D, Saltzman M R, et al. The greatest volcanic ash falls in the phanerozoic: Trans-atlantic relations of the Ordovician millbrig and kinnekulle k-bentonites[J]. The Sedimentary Record, 2004, 2: 4-8.
[125] Yang S C, Hu W X, Wang X L, et al. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25.
[126] Yan D T, Chen D Z, Wang Q C, et al. Predominance of stratified anoxic Yangtze Sea interrupted by short–term oxygenation during the Ordo–Silurian transition[J]. Chemical Geology, 2012, 291: 69-78.
[127] Shen J H, Pearson A, Henkes G A, et al. Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation[J]. Nature Geoscience, 2018, 11(7): 510-514.
[128] Rong J Y, Harper D A T. A global synthesis of the Latest Ordovician Hirnantian brachiopod faunas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79(4): 383-402.
[129] Ahm A S C, Bjerrum C J, Hammarlund E U. Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the Latest Ordovician glaciation[J]. Earth and Planetary Science Letters, 2017, 459: 145-156.
[130] Chen X, Rong J Y, Fan J X, et al. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3): 183-196.
[131] Yan D T, Chen D Z, Wang Q C, et al. Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J]. Geology, 2010, 38(7): 599-602.
[132] Gong Q, Wang X D, Zhao L S, et al. Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction[J]. Scientific Reports, 2017, 7: 5304, doi:  10.1038/s41598-017-05524-5.
[133] Jones D S, Martini A M, Fike D A, et al. A volcanic trigger for the Late ordovician mass extinction? Mercury data from South China and laurentia[J]. Geology, 2017, 45(7): 631-634.
[134] 谢军,鲜成钢,吴建发,等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探,2019,24(2):174-185.

Xie Jun, Xian Chenggang, Wu Jianfa, et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 174-185.
[135] 贾爱林,位云生,刘成,等. 页岩气压裂水平井控压生产动态预测模型及其应用[J]. 天然气工业,2019,39(6):71-80.

Jia Ailin, Wei Yunsheng, Liu Cheng, et al. A dynamic prediction model of pressure control production performance of shale gas fractured horizontal wells and its application[J]. Natural Gas Industry, 2019, 39(6): 71-80.
[136] 梁兴,徐进宾,刘成,等. 昭通国家级页岩气示范区水平井地质工程一体化导向技术应用[J]. 中国石油勘探,2019,24(2):226-232.

Liang Xing, Xu Jinbin, Liu Cheng, et al. Geosteering technology based on geological and engineering integration for horizontal wells in Zhaotong National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 226-232.
[137] 邱振,董大忠,卢斌,等. 中国南方五峰组—龙马溪组页岩中笔石与有机质富集关系探讨[J]. 沉积学报,2016,34(6):1011-1020.

Qiu Zhen, Dong Dazhong, Lu Bin, et al. Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation, South China[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1011-1020.
[138] Chen X, Rong J Y, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372.
[139] 李双建,沃玉进,周雁,等. 影响高演化泥岩盖层封闭性的主控因素分析[J]. 地质学报,2011,85(10):1691-1697.

Li Shuangjian, Yue Yujin, Zhou Yan, et al. Controlling factors affect sealing capability of well-developed muddy cap rock[J]. Acta Geologica Sinica, 2011, 85(10): 1691-1697.
[140] 陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志,2015,39(4):351-358.

Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.
[141] 邱振,邹才能,李熙喆,等. 论笔石对页岩气源储的贡献:以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学,2018,29(5):606-615.

Qiu Zhen, Zou Caineng, Li Xizhe, et al. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615.
[142] Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 182-196.
[143] 付金华,郭正权,邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报,2005,7(1):34-44.

Fu Jinhua, Guo Zhengquan, Deng Xiuqin. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 2005, 7(1): 34-44.
[144] 杨华,邓秀芹. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响[J]. 石油勘探与开发,2013,40(5):513-520.

Yang Hua, Deng Xiuqin. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(5): 513-520.
[145] 杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报,2013,34(1):1-11.

Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.
[146] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.

Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
[147] 邱振,卢斌,施振生,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学,2016,27(10):1817-1827,1847.

Qiu Zhen, Lu Bin, Shi Zhensheng, et al. Residual accumulation and resource assessment of shale oil from the Permian Lucaogou Formation in Jimusar Sag[J]. Natural Gas Geoscience, 2016, 27(10): 1817-1827, 1847.
[148] 杨智,邹才能. “进源找油”:源岩油气内涵与前景[J]. 石油勘探与开发,2019,46(1):173-184.

Yang Zhi, Zou Caineng. “Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184.
[149] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458.

Jin Zhijun, Bai Zhenrui, Gao Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458.
[150] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601-614.

Fu Jinhua, Niu Xiaobing, Wei-dong Dan, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
[151] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560-568.

Du Jinhu, Hu Suyun, Pang Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
[152] 周庆凡,杨国丰. 致密油与页岩油的概念与应用[J]. 石油与天然气地质,2012,33(4):541-544,570.

Zhou Qingfan, Yang Guofeng. Definition and application of tight oil and shale oil terms[J]. Oil & Gas Geology, 2012, 33(4): 541-544, 570.
[153] 姚泾利,邓秀琴,赵彦德,等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发,2013,40(2):150-158.

Yao Jingli, Deng Xiuqin, Zhao Yande, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158.
[154] 杨华,牛小兵,罗顺社,等. 鄂尔多斯盆地陇东地区长7段致密砂体重力流沉积模拟实验研究[J]. 地学前缘,2015,22(3):322-332.

Yang Hua, Niu Xiaobing, Luo Shunshe, et al. Research of simulated experiment on gravity flow deposits of tight sand bodies of Chang 7 Formation in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 322-332.
[155] 孙宁亮,钟建华,田东恩,等. 鄂尔多斯盆地南部延长组事件沉积与致密油的关系[J]. 中国石油大学学报(自然科学版),2017,41(6):30-40.

Sun Ningliang, Zhong Jianhua, Tian Dongen, et al. Relationship between event deposits and tight oil of Yanchang Formation in southern Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 30-40.
[156] Yang R C, Jin Z J, van Loon T, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[157] Zou C N, Wang L, Li Y, et al. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, central China[J]. Sedimentary Geology, 2012, 265-266: 143-155.
[158] 杨华,牛小兵,徐黎明,等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发,2016,43(4):511-520.

Yang Hua, Niu Xiaobing, Xu Liming, et al. Exploration potential of shale oil in Chang7 member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520.
[159] 杨华,梁晓伟,牛小兵,等. 陆相致密油形成地质条件及富集主控因素:以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发,2017,44(1):12-20.

Yang Hua, Liang Xiaowei, Niu Xiaobing, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12-20.
[160] 姚泾利,赵彦德,邓秀芹,等. 鄂尔多斯盆地延长组致密油成藏控制因素[J]. 吉林大学学报(地球科学版),2015,45(4):983-992.

Yao Jingli, Zhao Yande, Deng Xiuqin, et al. Controlling factors of tight oil reservior in Triassic Yanchang Formation in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 983-992.
[161] 邱振,李建忠,吴晓智,等. 国内外致密油勘探现状、主要地质特征及差异[J]. 岩性油气藏,2015,27(4):119-126.

Qiu Zhen, Li Jianzhong, Wu Xiaozhi, et al. Exploration status, main geologic characteristics and their differences of tight oil between America and China[J]. Lithologic Reservoirs, 2015, 27(4): 119-126.
[162] 姜星,于建青,史飞,等. 鄂尔多斯盆地子北地区长6段油藏成藏条件及主控因素[J]. 地球科学与环境学报,2014,36(4):64-76.

Jiang Xing, Yu Jianqing, Shi Fei, et al. Hydrocarbon accumulation condition and main controlling factors of Chang-6 reservoir in Zibei area of Ordos Basin[J]. Journal of Earth Sciences and Environment, 2014, 36(4): 64-76.
[163] 张国伟,程顺有,郭安林,等. 秦岭—大别中央造山系南缘勉略古缝合带的再认识:兼论中国大陆主体的拼合[J]. 地质通报,2004,23(9/10):846-853.

Zhang Guowei, Cheng Shun-you, Guo Anlin, et al. Mianlue paleo-suture on the southern margin of the central orogenic system in Qinling-Dabie with a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China, 2004, 23(9/10): 846-853.
[164] 陈全红,李文厚,郭艳琴,等. 鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J]. 地质学报,2006,80(5):656-663.

Chen Quanhong, Li Wenhou, Guo Yanqin, et al. Turbidite systems and the significance of petroleum exploration of Yanchang Formation in the southern Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 656-663.
[165] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
[166] 张文正,杨华,彭平安,等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学,2009,38(6):573-582.

Zhang Wenzheng, Yang Hua, Peng Ping’an, et al. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582.
[167] 陈安清,陈红德,侯明才,等. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示[J]. 地质学报,2011,85(10):1681-1690.

Chen Anqing, Chen Hongde, Hou Mingcai, et al. The Middle-Late Triassic event sediments in Ordos Basin: Indicators for episode I of the indosinian movement[J]. Acta Geologica Sinica, 2011, 85(10): 1681-1690.
[168] 邓秀琴,蔺昉晓,刘显阳,等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报,2008,10(2):159-166.

Deng Xiuqin, Lin Fangxiao, Liu Xianyang, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166.
[169] 邱欣卫,刘池阳,李元昊,等. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义[J]. 沉积学报,2009,27(6):1138-1146.

Qiu Xinwei, Liu Chiyang, Li Yuanhao, et al. Distribution characteristics and geological significances of tuff interlayers in Yanchang Formation of Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1138-1146.
[170] Zhu R K, Cui J W, Deng S H, et al. High-precision dating and geological significance of Chang 7 tuff zircon of the Triassic Yanchang Formation, Ordos Basin in central China[J]. Acta Geologica Sinica, 2019, 93(6): 1823-1834, doi:  10.1111/1755-6724.14329.
[171] Zhang W Z, Yang W W, Xie L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017, 183: 38-51.
[172] 付金华,李士祥,徐黎明,等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发,2018,45(6):936-946.

Fu Jinhua, Li Shixiang, Xu Liming, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 936-946.
[173] 李森,朱如凯,崔景伟,等. 古环境与有机质富集控制因素研究:以鄂尔多斯盆地南缘长7油层组为例[J]. 岩性油气藏,2019,31(1):87-95.

Li Sen, Zhu Rukai, Cui Jingwei, et al. Paleoenvironment and controlling factors of organic matter enrichment: A case of Chang 7 oil reservoir in southern margin of Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(1): 87-95.
[174] 傅强,吕苗苗,刘永斗. 鄂尔多斯盆地晚三叠世湖盆浊积岩发育特征及地质意义[J]. 沉积学报,2008,26(2):186-192.

Fu Qiang, Miaomiao Lü, Liu Yongdou. Developmental characteristics of turbidite and its implication on petroleum geology in Late-Triassic Ordos Basin[J]. Acta Sedimentologica Sinica, 2008, 26(2): 186-192.
[175] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428.
[176] 刘池洋,赵红格,桂小军,等. 王建强. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638.

Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.
[177] 邓胜徽,卢远征,罗忠,等. 鄂尔多斯盆地延长组的划分、时代及中—上三叠统界线[J]. 中国科学(D辑):地球科学,2018,48(10):1293-1311.

Deng Shenghui, Lu Yuanzheng, Luo Zhong, et al. Subdivision and age of the Yanchang Formation and the Middle/Upper Triassic boundary in Ordos Basin, North China[J]. Science China (Seri. D): Earth Sciences, 2018, 48(10): 1293-1311.
[178] 王多云,辛补社,杨华,等. 鄂尔多斯盆地延长组长7底部凝灰岩锆石SHRIMP U-Pb年龄及地质意义[J]. 中国科学(D辑):地球科学,2014,44(10):2160-2171.

Wang Duoyun, Xin Bushe, Yang Hua, et al. Zircon SHRIMP U-Pb age and geological implications of tuff at the bottom of Chang-7 member of Yanchang Formation in the Ordos Basin[J]. Science China (Seri. D): Earth Sciences, 2014, 44(10): 2160-2171.
[179] 张文,李玉宏,张乔,等. 鄂尔多斯盆地南部延长组时代划分及长73对印支Ⅰ幕的响应[J]. 地球科学,2017,42(9):1565-1577.

Zhang Wen, Li Yuhong, Zhang Qiao, et al. Chronostratigraphic division of Yanchang Formation in southern Ordos Basin and response of Chang 73 to Episode I of Indosinian Movement[J]. Earth Science, 2017, 42(9): 1565-1577.
[180] 贺聪,吉利明,苏奥,等. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系[J]. 地学前缘,2017,24(6):277-285.

He Cong, Ji Liming, Su Ao, et al. Relationship between hydrothermal sedimentation process and source rock development in the Yanchang Formation in southern Ordos Basin[J]. Earth Science Frontiers, 2017, 24(6): 277-285.
[181] 张文正,杨华,解丽琴,等. 湖底热水活动及其对优质烃源岩发育的影响:以鄂尔多斯盆地长7烃源岩为例[J]. 石油勘探与开发,2010,37(4):424-429.

Zhang Wenzheng, Yang Hua, Xie Liqin, et al. Lake-bottom hydrothermal activities and their influences on the high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429.
[182] 宋世骏,柳益群,郑庆华,等. 鄂尔多斯盆地三叠系延长组黑色岩系成因探讨:以铜川地区长73段为例[J]. 沉积学报,2019,37(6):1117-1128.

Song Shijun, Liu Yiqun, Zheng Qinghua, et al. Genesis analysis of black rock series: A case study of Chang 73 member in Tongchuan area[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1117-1128.
[183] Yang H, Zhang W Z, Wu K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2012, 39(4): 285-293.
[184] 刘群,袁选俊,林森虎,等. 湖相泥岩、页岩的沉积环境和特征对比:以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质,2018,39(3):531-540.

Liu Qun, Yuan Xuanjun, Lin Senhu, et al. Depositional environment and characteristic comparison between lacustrine mudstone and shale: A case study from the Chang 7 member of the Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 531-540.
[185] Yuan W, Liu G D, Stebbins A, et al. Reconstruction of redox conditions during deposition of organic-rich shales of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 158-170.
[186] Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466.
[187] Kuypers M M M, Pancost R D, Nijenhuis I A, et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the Late Cenomanian oceanic anoxic event[J]. Paleoceanography, 2002, 17(4): 1051, doi:  10.1029/2000PA000569.
[188] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921.

Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
[189] 李文厚,邵磊,魏红红,等. 西北地区湖相浊流沉积[J]. 西北大学学报(自然科学版),2001,31(1):57-62.

Li Wenhou, Shao Lei, Wei Honghong, et al. Turbidity current deposits of lake facies in northwestern China[J]. Journal of Northwest University (Natural Science Edition), 2001, 31(1): 57-62.
[190] 赵俊兴,李凤杰,申晓莉,等. 鄂尔多斯盆地南部长6和长7油层浊流事件的沉积特征及发育模式[J]. 石油学报,2008,29(3):389-394.

Zhao Junxing, Li Fengjie, Shen Xiaoli, et al. Sedimentary characteristics and development pattern of turbidity event of Chang 6 and Chang 7 oil reservoirs in the southern Ordos Basin[J]. Acta Petrolei Sinica, 2008, 29(3): 389-394.
[191] 邹才能,赵文智,张兴阳,等. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J]. 地质学报,2008,82(6):813-825.

Zou Caineng, Zhao Wenzhi, Zhang Xingyang, et al. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins[J]. Acta Geologica Sinica, 2008, 82(6): 813-825.
[192] 杨仁超,金之钧,孙冬胜,等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20.

Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
[193] Talling P J, Masson D G, Sumner F J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[194] Kane I A, Pontén A S M. Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
[195] 杨仁超,尹伟,樊爱萍,等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806.

Yang Renchao, Yin Wei, Fan Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
[196] Yang R C, He Z L, Qiu G Q, et al. A Late Triassic gravity flow depositional system in the southern Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(6): 724-733.
[197] Yang R C, Fan A P, Han Z Z, et al. An upward shallowing succession of gravity flow deposits in the Early Cretaceous Lingshandao Formation, western Yellow Sea[J]. Acta Geologica Sinica, 2016, 90(4): 1553-1554.
[198] Yang R C, Fan A P, Han Z Z, et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
[199] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187.

Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
[200] 匡立春,唐勇,雷德文,等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667.

Kuang Lichun, Tang Yong, Lei Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
[201] 孙宁亮,钟建华,刘绍光,等. 鄂尔多斯盆地南部延长组重力流致密储层成岩作用及物性演化[J]. 地球科学,2017,42(10):1802-1816.

Sun Ningliang, Zhong Jianhua, Liu Shaoguang, et al. Diagenesis and physical property evolution of gravity flow tight reservoir of Yanchang Formation in southern Ordos basin[J]. Earth Science, 2017, 42(10): 1802-1816.
[202] 卢双舫,黄文彪,陈方文,等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发,2012,39(2):249-256.

Lu Shuangfang, Huang Wenbiao, Chen Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256.
[203]
[204] 杨华,张文正. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J]. 地球化学,2005,34(2):147-154.

Yang Hua, Zhang Wenzheng. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154.
[205] 冉波,刘树根,孙玮,等. 四川盆地及周缘下古生界五峰组—龙马溪组页岩岩相分类[J]. 地学前缘,2016,23(2):96-107.

Ran Bo, Liu Shugen, Sun Wei, et al. Lithofacies classification of shales of the Lower Paleozoic Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science Frontiers, 2016, 23(2): 96-107.
[206] Chen D Z, Wang J G, Qing H R, et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009, 258(3/4): 168-181.
[207] Tang D J, Shi X Y, Jiang G Q. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites[J]. Precambrian Research, 2014, 248: 1-16.
[208] Blattmann T M, Liu Z, Zhang Y, et al. Mineralogical control on the fate of continentally derived organic matter in the ocean[J]. Science, 2019, 366(6466): 742-745.
[209] von Rad U, Schaaf M, Michels K H, et al. A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian sea[J]. Quaternary Research, 1999, 51(1): 39-53.
[210] 王冠民,钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48.

Wang Guanmin, Zhong Jianhua. A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Mineralogica, 2004, 23(1): 43-48.
[211] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507.

Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
[212] 吴松涛,邹才能,朱如凯,等. 鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学——中国地质大学学报,2015,40(11):1810-1823.

Wu Songtao, Zou Caineng, Zhu Rukai, et al. Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(11): 1810-1823.
[213] 吴嘉鹏,王英民,王海荣,等. 深水重力流与底流交互作用研究进展[J]. 地质论评,2012,58(6):1110-1120.

Wu Jiapeng, Wang Yingmin, Wang Hairong, et al. The interaction between deep-water turbidity and bottom currents: A review[J]. Geological Review, 2012, 58(6): 1110-1120.
[214] 潘树新,陈彬滔,刘华清,等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585.

Pan Shuxin, Chen Bintao, Liu Huaqing, et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585.
[215] 刘长利,朱筱敏,胡有山,等. 地震沉积学在识别陆相湖泊浊积砂体中的应用[J]. 吉林大学学报(地球科学版),2011,41(3):657-664.

Liu Changli, Zhu Xiaomin, Hu Youshan, et al. Application of seismic sedimentology on lacustrine turbidite deposition indetification[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 657-664.
[216] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
[217] 王成善,曹珂,黄永建. 沉积记录与白垩纪地球表层系统变化[J]. 地学前缘,2009,16(5):1-14.

Wang Chengshan, Cao Ke, Huang Yongjian. Sedimentary record and Cretaceous Earth Surface System changes[J]. Earth Science Frontiers, 2009, 16(5): 1-14.